Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „HYBRID CNN-RNN MODEL“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "HYBRID CNN-RNN MODEL" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "HYBRID CNN-RNN MODEL"
Dr. J. GLADSON MARIA BRITTO, Dr. NARENDHAR MULUGU, and Mrs. K SOWJANYA BHARATHI. "A HYBRID DEEP LEARNING APPROACH FOR BREAST CANCER DETECTION USING CNN AND RNN." Bioscan 19, Supplement 2 (2024): 272–86. https://doi.org/10.63001/tbs.2024.v19.i02.s2.pp272-286.
Der volle Inhalt der QuelleZaheer, Shahzad, Nadeem Anjum, Saddam Hussain, et al. "A Multi Parameter Forecasting for Stock Time Series Data Using LSTM and Deep Learning Model." Mathematics 11, no. 3 (2023): 590. http://dx.doi.org/10.3390/math11030590.
Der volle Inhalt der QuelleAirlangga, Gregorius. "A Hybrid CNN-RNN Model for Enhanced Anemia Diagnosis: A Comparative Study of Machine Learning and Deep Learning Techniques." Indonesian Journal of Artificial Intelligence and Data Mining 7, no. 2 (2024): 366. http://dx.doi.org/10.24014/ijaidm.v7i2.29898.
Der volle Inhalt der QuelleKrishnan, V. Gokula, M. V. Vijaya Saradhi, T. A. Mohana Prakash, K. Gokul Kannan, and AG Noorul Julaiha. "Development of Deep Learning based Intelligent Approach for Credit Card Fraud Detection." International Journal on Recent and Innovation Trends in Computing and Communication 10, no. 12 (2022): 133–39. http://dx.doi.org/10.17762/ijritcc.v10i12.5894.
Der volle Inhalt der QuelleKiranpure, Ayush. "Cyclone Intensity Prediction Using Deep Learning on INSAT-3D IR Imagery: A Comparative Analysis." INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 04 (2025): 1–9. https://doi.org/10.55041/ijsrem45392.
Der volle Inhalt der QuelleAshraf, Mohsin, Fazeel Abid, Ikram Ud Din, et al. "A Hybrid CNN and RNN Variant Model for Music Classification." Applied Sciences 13, no. 3 (2023): 1476. http://dx.doi.org/10.3390/app13031476.
Der volle Inhalt der QuelleFrancis Densil Raj V. "A Novel CNN-RNN-LSTM Framework for Predictive Cardiovascular Diagnostics of Aortic Stenosis in a Large Scale 12-Lead ECG Dataset." Communications on Applied Nonlinear Analysis 32, no. 3 (2024): 685–700. https://doi.org/10.52783/cana.v32.2483.
Der volle Inhalt der QuelleYu, Dian, and Shouqian Sun. "A Systematic Exploration of Deep Neural Networks for EDA-Based Emotion Recognition." Information 11, no. 4 (2020): 212. http://dx.doi.org/10.3390/info11040212.
Der volle Inhalt der QuelleBehera, Bibhuti Bhusana, Binod Kumar Pattanayak, and Rajani Kanta Mohanty. "Deep Ensemble Model for Detecting Attacks in Industrial IoT." International Journal of Information Security and Privacy 16, no. 1 (2022): 1–29. http://dx.doi.org/10.4018/ijisp.311467.
Der volle Inhalt der QuelleAbdulkarim, Abdullahi, John K. Alhassan, and Sulaimon A. Bashir. "Document Classification in HEIs Using Deep Learning." Proceedings of the Faculty of Science Conferences 1 (March 1, 2025): 38–42. https://doi.org/10.62050/fscp2024.462.
Der volle Inhalt der QuelleDissertationen zum Thema "HYBRID CNN-RNN MODEL"
SONI, ANKIT. "DETECTING DEEPFAKES USING HYBRID CNN-RNN MODEL." Thesis, 2022. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19168.
Der volle Inhalt der QuelleBuchteile zum Thema "HYBRID CNN-RNN MODEL"
Ma, Zhiyuan, Wenge Rong, Yanmeng Wang, Libin Shi, and Zhang Xiong. "A Hybrid RNN-CNN Encoder for Neural Conversation Model." In Knowledge Science, Engineering and Management. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99247-1_14.
Der volle Inhalt der QuelleRenjith, S., Rashmi Manazhy, and M. S. Sumi Suresh. "Recognition of Sign Language Using Hybrid CNN–RNN Model." In Innovative Computing and Communications. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-3591-4_2.
Der volle Inhalt der QuelleChopra, Sonali, Parul Agarwal, Jawed Ahmed, Siddhartha Sankar Biswas, and Ahmed J. Obaid. "RNN-CNN Based Hybrid Deep Learning Model for Mental Healthcare." In Algorithms for Intelligent Systems. Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-97-8074-7_30.
Der volle Inhalt der QuelleBhattacharya, Somnath, and Padmalini Singh. "CNN–RNN Hybrid Deep Learning Model for Monthly Rainfall Prediction." In Smart Innovation, Systems and Technologies. Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-97-7717-4_39.
Der volle Inhalt der QuelleGuo, Long, Dongxiang Zhang, Lei Wang, Han Wang, and Bin Cui. "CRAN: A Hybrid CNN-RNN Attention-Based Model for Text Classification." In Conceptual Modeling. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00847-5_42.
Der volle Inhalt der QuelleKunndra, Chetanya, Arjun Choudhary, Jaspreet Kaur, Aryan Jogia, Prashant Mathur, and Varun Shukla. "NTPhish: A CNN-RNN Hybrid Deep Learning Model to Detect Phishing Websites." In Cryptology and Network Security with Machine Learning. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0641-9_40.
Der volle Inhalt der QuelleBensalah, Nouhaila, Habib Ayad, Abdellah Adib, and Abdelhamid Ibn El Farouk. "CRAN: An Hybrid CNN-RNN Attention-Based Model for Arabic Machine Translation." In Networking, Intelligent Systems and Security. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3637-0_7.
Der volle Inhalt der QuelleKumar, Abhishek, and Abhishek Kumar Mehto. "Efficient anomaly detection using GNN, CNN and RNN based hybrid models." In Intelligent Computing and Communication Techniques. CRC Press, 2025. https://doi.org/10.1201/9781003530190-116.
Der volle Inhalt der QuelleAsadi, Srinivasulu, A. V. Senthil Kumar, and Anupam Agrawal. "Enhancing Cardiovascular Disease Detection and Prediction." In Advances in Medical Diagnosis, Treatment, and Care. IGI Global, 2025. https://doi.org/10.4018/979-8-3693-7728-4.ch013.
Der volle Inhalt der QuelleSrinivasulu, Asadi, Bhimsingh Bohara, A. V. Senthil Kumar, et al. "Enhancing Throat Cancer Prediction and Detection." In Advances in Medical Diagnosis, Treatment, and Care. IGI Global, 2025. https://doi.org/10.4018/979-8-3693-7728-4.ch011.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "HYBRID CNN-RNN MODEL"
Raphael, Anisha, Abisri S, Anitha E, Ritika S, and Manju Venugopalan. "Attention Based CNN-RNN Hybrid Model for Image Captioning." In 2024 5th IEEE Global Conference for Advancement in Technology (GCAT). IEEE, 2024. https://doi.org/10.1109/gcat62922.2024.10923871.
Der volle Inhalt der QuelleH C, Bhanujyothi, and I. Jeena Jacob. "Hybrid RNN-CNN model for predicting stock market trends." In 2024 1st International Conference on Advances in Computing, Communication and Networking (ICAC2N). IEEE, 2024. https://doi.org/10.1109/icac2n63387.2024.10895957.
Der volle Inhalt der QuelleMomynkulov, Zeinel, Nurzhan Omarov, and Aigerim Altayeva. "CNN-RNN Hybrid Model For Dangerous Sound Detection in Urban Area." In 2024 IEEE 4th International Conference on Smart Information Systems and Technologies (SIST). IEEE, 2024. http://dx.doi.org/10.1109/sist61555.2024.10629358.
Der volle Inhalt der QuelleSurapally, Swathi, Siva Ramakrishna Jeevakala, and Sriya Pranathi Aluri. "Hybrid CNN and RNN Variant Model for Indian Music Genre Classification." In 2025 3rd International Conference on Smart Systems for applications in Electrical Sciences (ICSSES). IEEE, 2025. https://doi.org/10.1109/icsses64899.2025.11009650.
Der volle Inhalt der QuelleMohammad, Amanulla, G. Suryakala Eswari, Perla Ratna Kumari, A. Lakshmanarao, and D. Chandra Mouli. "A Hybrid CNN-RNN Model for Enhanced Pneumonia Detection using X-Ray Imaging." In 2024 First International Conference on Software, Systems and Information Technology (SSITCON). IEEE, 2024. https://doi.org/10.1109/ssitcon62437.2024.10796125.
Der volle Inhalt der QuellePreethi, R., Ritul Bharati, and S. Priya. "Predicting Antibiotic Resistance from Genomic Sequences Using a Hybrid CNN-RNN Model: A Comprehensive Approach." In 2024 Third International Conference on Artificial Intelligence, Computational Electronics and Communication System (AICECS). IEEE, 2024. https://doi.org/10.1109/aicecs63354.2024.10957126.
Der volle Inhalt der QuelleSadek, Zayneb, Abir Hadriche, and Nawel Jmail. "An Efficient CNN and RNN Hybrid Model for the Detection of Epileptic Seizures in EEG Signals." In 2024 IEEE 24th International Conference on Bioinformatics and Bioengineering (BIBE). IEEE, 2024. https://doi.org/10.1109/bibe63649.2024.10820445.
Der volle Inhalt der QuelleSalamkayala, Om V. P., Saeed Shiry Ghidary, Christopher Howard, Russell Campion, and Joideep Banerjee. "Detection of ICMPV6 DDOS Attacks Using Ensemble Stacking of Hybrid Model-1 (CNN-LSTM) and Model-2 (RNN-GRU)." In 2024 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2024. https://doi.org/10.1109/icmlc63072.2024.10935151.
Der volle Inhalt der QuelleVarshney, Rajat Kishor, Alok Katiyar, and Prashant Johri. "Hybrid CNN-RNN Models for Multimodal Analysis of Autism Spectrum Disorder Neuroimaging." In 2025 International Conference on Automation and Computation (AUTOCOM). IEEE, 2025. https://doi.org/10.1109/autocom64127.2025.10956945.
Der volle Inhalt der QuelleSimhadri, V., Kilari Jyothi, and Reddy Rakesh. "Quality-Aware Approach to Arrhythmia Detection Using CNN and Hybrid RNN Models." In 2025 4th International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE). IEEE, 2025. https://doi.org/10.1109/icdcece65353.2025.11035120.
Der volle Inhalt der Quelle