Zeitschriftenartikel zum Thema „HYBRID MOVIE“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "HYBRID MOVIE" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Nosshi, Anthony, Aziza Asem und Mohamed Badr Senousy. „Hybrid Recommender System via Personalized Users’ Context“. Cybernetics and Information Technologies 19, Nr. 1 (01.03.2019): 101–15. http://dx.doi.org/10.2478/cait-2019-0006.
Der volle Inhalt der QuelleWang, Yibo, Mingming Wang und Wei Xu. „A Sentiment-Enhanced Hybrid Recommender System for Movie Recommendation: A Big Data Analytics Framework“. Wireless Communications and Mobile Computing 2018 (2018): 1–9. http://dx.doi.org/10.1155/2018/8263704.
Der volle Inhalt der QuelleNosshi, Anthony, Aziza Saad Asem und Mohammed Badr Senousy. „Hybrid Recommender System Using Emotional Fingerprints Model“. International Journal of Information Retrieval Research 9, Nr. 3 (Juli 2019): 48–70. http://dx.doi.org/10.4018/ijirr.2019070104.
Der volle Inhalt der QuelleTripathi, Jyoti, Sunita Tiwari, Anu Saini und Sunita Kumari. „Prediction of movie success based on machine learning and twitter sentiment analysis using internet movie database data“. Indonesian Journal of Electrical Engineering and Computer Science 29, Nr. 3 (01.03.2023): 1750. http://dx.doi.org/10.11591/ijeecs.v29.i3.pp1750-1757.
Der volle Inhalt der QuelleBohra, Sneha, Amit Gaikwad und Ghanapriya Singh. „Hybrid Machine Learning Based Recommendation Algorithm for Multiple Movie Dataset“. Indian Journal Of Science And Technology 16, Nr. 37 (09.10.2023): 3121–28. http://dx.doi.org/10.17485/ijst/v16i37.2065.
Der volle Inhalt der QuelleMohile, Sara, Hemant Ramteke, Pragati Shelgaonkar, Hritika Phule und M. M. Phadtare. „A Movie Recommender System Using Hybrid Approach: A Review“. International Journal for Research in Applied Science and Engineering Technology 10, Nr. 3 (31.03.2022): 1834–37. http://dx.doi.org/10.22214/ijraset.2022.41014.
Der volle Inhalt der QuelleLekakos, George, und Petros Caravelas. „A hybrid approach for movie recommendation“. Multimedia Tools and Applications 36, Nr. 1-2 (21.12.2006): 55–70. http://dx.doi.org/10.1007/s11042-006-0082-7.
Der volle Inhalt der QuelleJadhav, Prof Rupali. „Implementing a Movie Recommendation System in Machine Learning Using Hybrid Approach“. International Journal for Research in Applied Science and Engineering Technology 11, Nr. 5 (31.05.2023): 6601–3. http://dx.doi.org/10.22214/ijraset.2023.53204.
Der volle Inhalt der QuelleEz-zahout, Abderrahmane, Hicham Gueddah, Abir Nasry, Rabie Madani und Fouzia Omary. „A hybrid big data movies recommendation model based k-nearest neighbors and matrix factorization“. Indonesian Journal of Electrical Engineering and Computer Science 26, Nr. 1 (01.04.2022): 434. http://dx.doi.org/10.11591/ijeecs.v26.i1.pp434-441.
Der volle Inhalt der QuelleHuang, Yi-Ting, und Ping-Feng Pai. „Using the Least Squares Support Vector Regression to Forecast Movie Sales with Data from Twitter and Movie Databases“. Symmetry 12, Nr. 4 (15.04.2020): 625. http://dx.doi.org/10.3390/sym12040625.
Der volle Inhalt der QuelleAdikara, Putra Pandu, Yuita Arum Sari, Sigit Adinugroho und Budi Darma Setiawan. „Movie recommender systems using hybrid model based on graphs with co-rated, genre, and closed caption features“. Register: Jurnal Ilmiah Teknologi Sistem Informasi 7, Nr. 1 (30.01.2021): 31. http://dx.doi.org/10.26594/register.v7i1.2081.
Der volle Inhalt der QuelleSoni, Karan, Rinky Goyal, Bhagyashree Vadera und Siddhi More. „A Three Way Hybrid Movie Recommendation Syste“. International Journal of Computer Applications 160, Nr. 9 (15.02.2017): 29–32. http://dx.doi.org/10.5120/ijca2017913026.
Der volle Inhalt der QuelleSharma, Saurabh, und Harish Kumar Shakya. „Hybrid Movie Recommendation System Using Machine Learning“. International Journal of Emerging Technology and Advanced Engineering 13, Nr. 1 (05.01.2023): 100–123. http://dx.doi.org/10.46338/ijetae0123_12.
Der volle Inhalt der QuellePanyatip, Tammanoon, Manasawee Kaenampornpan und Phatthanaphong Chomphuwiset. „Conceptual framework of recommendation system with hybrid method“. Indonesian Journal of Electrical Engineering and Computer Science 31, Nr. 3 (01.09.2023): 1696. http://dx.doi.org/10.11591/ijeecs.v31.i3.pp1696-1704.
Der volle Inhalt der QuelleGomathy, Dr C. K. „A Comparing Collaborative Filtering and Hybrid Recommender System for E-Commerce“. International Journal for Research in Applied Science and Engineering Technology 9, Nr. 11 (30.11.2021): 635–38. http://dx.doi.org/10.22214/ijraset.2021.38844.
Der volle Inhalt der QuelleRoy, Arighna, und Simone A. Ludwig. „Genre based hybrid filtering for movie recommendation engine“. Journal of Intelligent Information Systems 56, Nr. 3 (18.02.2021): 485–507. http://dx.doi.org/10.1007/s10844-021-00637-w.
Der volle Inhalt der QuelleGogri, Meet, Dharmil Chheda und Vinit Solani. „Movie Recommendation Using Deep Learning with Hybrid Approach“. Aksh - The Advance Journal 1, Nr. 2 (30.09.2020): 1–4. http://dx.doi.org/10.51916/aksh.2020.v01i02.001.
Der volle Inhalt der QuelleBahl, Dushyant, Vaibhav Kain, Akshay Sharma und Mugdha Sharma. „A novel hybrid approach towards movie recommender systems“. Journal of Statistics and Management Systems 23, Nr. 6 (29.07.2020): 1049–58. http://dx.doi.org/10.1080/09720510.2020.1799503.
Der volle Inhalt der QuelleBalakrishnan, Vimala, und Hossein Arabi. „HyPeRM: A HYBRID PERSONALITY-AWARE RECOMMENDER FOR MOVIE“. Malaysian Journal of Computer Science 31, Nr. 1 (25.01.2018): 48–62. http://dx.doi.org/10.22452/mjcs.vol31no1.4.
Der volle Inhalt der QuellePriscilla, S., und C. Naveena. „Social Balance Theory Based Hybrid Movie Recommendation System“. Journal of Computational and Theoretical Nanoscience 17, Nr. 9 (01.07.2020): 4022–25. http://dx.doi.org/10.1166/jctn.2020.9012.
Der volle Inhalt der QuelleDharaniya, R., und G. V. Uma. „Hybrid Genre Recognition Based on Movie Script Features“. Journal of Computational and Theoretical Nanoscience 14, Nr. 10 (01.10.2017): 5133–37. http://dx.doi.org/10.1166/jctn.2017.6933.
Der volle Inhalt der QuelleKumar, N. Suresh, und Pothina Praveena. „Evolution of hybrid distance based kNN classification“. IAES International Journal of Artificial Intelligence (IJ-AI) 10, Nr. 2 (01.06.2021): 510. http://dx.doi.org/10.11591/ijai.v10.i2.pp510-518.
Der volle Inhalt der QuelleSun, Yanni. „Genre mixing on WeChat: evidence from a movie review subscription account“. Chinese Semiotic Studies 17, Nr. 3 (01.08.2021): 401–19. http://dx.doi.org/10.1515/css-2021-2005.
Der volle Inhalt der QuelleSahu, Sandipan, Raghvendra Kumar, Pathan MohdShafi, Jana Shafi, SeongKi Kim und Muhammad Fazal Ijaz. „A Hybrid Recommendation System of Upcoming Movies Using Sentiment Analysis of YouTube Trailer Reviews“. Mathematics 10, Nr. 9 (06.05.2022): 1568. http://dx.doi.org/10.3390/math10091568.
Der volle Inhalt der QuelleParanjape, Vishal, Neelu Nihalani und Nishchol Mishra. „Design of a Hybrid Movie Recommender System Using Machine Learning“. International Journal of Emerging Technology and Advanced Engineering 13, Nr. 3 (06.03.2023): 159–65. http://dx.doi.org/10.46338/ijetae0323_17.
Der volle Inhalt der QuelleMalik, Sonika. „Movie Recommender System using Machine Learning“. EAI Endorsed Transactions on Creative Technologies 9, Nr. 3 (11.10.2022): e3. http://dx.doi.org/10.4108/eetct.v9i3.2712.
Der volle Inhalt der QuelleBehera, Rabi Narayan, und Sujata Dash. „A Particle Swarm Optimization based Hybrid Recommendation System“. International Journal of Knowledge Discovery in Bioinformatics 6, Nr. 2 (Juli 2016): 1–10. http://dx.doi.org/10.4018/ijkdb.2016070101.
Der volle Inhalt der QuelleLiu, Duen-Ren, Yun-Cheng Chou und Ciao-Ting Jian. „Integrating collaborative topic modeling and diversity for movie recommendations during news browsing“. Kybernetes 49, Nr. 11 (27.11.2019): 2633–49. http://dx.doi.org/10.1108/k-08-2019-0578.
Der volle Inhalt der QuelleAmolochitis, Emmanouil, Ioannis T. Christou und Zheng-Hua Tan. „Implementing a Commercial-Strength Parallel Hybrid Movie Recommendation Engine“. IEEE Intelligent Systems 29, Nr. 2 (März 2014): 92–96. http://dx.doi.org/10.1109/mis.2014.23.
Der volle Inhalt der QuelleCHRISTAKOU, CHRISTINA, SPYROS VRETTOS und ANDREAS STAFYLOPATIS. „A HYBRID MOVIE RECOMMENDER SYSTEM BASED ON NEURAL NETWORKS“. International Journal on Artificial Intelligence Tools 16, Nr. 05 (Oktober 2007): 771–92. http://dx.doi.org/10.1142/s0218213007003540.
Der volle Inhalt der QuelleRokade, Prakash Pandharinath, PVRD Prasad Rao und Aruna Kumari Devarakonda. „Forecasting movie rating using k-nearest neighbor based collaborative filtering“. International Journal of Electrical and Computer Engineering (IJECE) 12, Nr. 6 (01.12.2022): 6506. http://dx.doi.org/10.11591/ijece.v12i6.pp6506-6512.
Der volle Inhalt der QuelleSingh, Kamred Udham. „A Multi-Criteria Movie Recommendation System based on User Preferences and Movie Features“. Mathematical Statistician and Engineering Applications 70, Nr. 1 (31.01.2021): 348–60. http://dx.doi.org/10.17762/msea.v70i1.2317.
Der volle Inhalt der QuelleDubey, Gaurav, Richa Khera, Ashish Grover, Amandeep Kaur, Abhishek Goyal, Rajkumar Rajkumar, Harsh Khatter und Somya Srivastava. „A Hybrid Convolutional Network and Long Short-Term Memory (HBCNLS) model for Sentiment Analysis on Movie Reviews“. International Journal on Recent and Innovation Trends in Computing and Communication 11, Nr. 4 (04.05.2023): 341–48. http://dx.doi.org/10.17762/ijritcc.v11i4.6458.
Der volle Inhalt der QuelleKumar, M. Sandeep, und Prabhu J. „Hybrid Model for Movie Recommendation System Using Fireflies and Fuzzy C-Means“. International Journal of Web Portals 11, Nr. 2 (Juli 2019): 1–13. http://dx.doi.org/10.4018/ijwp.2019070101.
Der volle Inhalt der QuelleAwan, Mazhar Javed, Rafia Asad Khan, Haitham Nobanee, Awais Yasin, Syed Muhammad Anwar, Usman Naseem und Vishwa Pratap Singh. „A Recommendation Engine for Predicting Movie Ratings Using a Big Data Approach“. Electronics 10, Nr. 10 (20.05.2021): 1215. http://dx.doi.org/10.3390/electronics10101215.
Der volle Inhalt der QuelleSharma, Mugdha, Laxmi Ahuja und Vinay Kumar. „A Hybrid Filtering Approach for an Improved Context-aware Recommender System“. Recent Patents on Engineering 13, Nr. 1 (08.02.2019): 39–47. http://dx.doi.org/10.2174/1872212112666180813124358.
Der volle Inhalt der QuellePotter, Michael, Hamlin Liu, Yash Lala, Christian Loanzon und Yizhou Sun. „GRU4RecBE: A Hybrid Session-Based Movie Recommendation System (Student Abstract)“. Proceedings of the AAAI Conference on Artificial Intelligence 36, Nr. 11 (28.06.2022): 13029–30. http://dx.doi.org/10.1609/aaai.v36i11.21651.
Der volle Inhalt der QuelleAli, Yasher, Osman Khalid, Imran Ali Khan, Syed Sajid Hussain, Faisal Rehman, Sajid Siraj und Raheel Nawaz. „A hybrid group-based movie recommendation framework with overlapping memberships“. PLOS ONE 17, Nr. 3 (31.03.2022): e0266103. http://dx.doi.org/10.1371/journal.pone.0266103.
Der volle Inhalt der QuelleAlshammari, Gharbi, Stelios Kapetanakis, Abdullah Alshammari, Nikolaos Polatidis und Miltos Petridis. „Improved Movie Recommendations Based on a Hybrid Feature Combination Method“. Vietnam Journal of Computer Science 06, Nr. 03 (August 2019): 363–76. http://dx.doi.org/10.1142/s2196888819500192.
Der volle Inhalt der QuelleVellaichamy, Vimala, und Vivekanandan Kalimuthu. „Hybrid Collaborative Movie Recommender System Using Clustering and Bat Optimization“. International Journal of Intelligent Engineering and Systems 10, Nr. 5 (31.10.2017): 38–47. http://dx.doi.org/10.22266/ijies2017.1031.05.
Der volle Inhalt der QuelleWei, Shouxian, Xiaolin Zheng, Deren Chen und Chaochao Chen. „A hybrid approach for movie recommendation via tags and ratings“. Electronic Commerce Research and Applications 18 (Juli 2016): 83–94. http://dx.doi.org/10.1016/j.elerap.2016.01.003.
Der volle Inhalt der QuelleAbdelkhalek, Raoua, Imen Boukhris und Zied Elouedi. „Towards more trustworthy predictions: A hybrid evidential movie recommender system“. JUCS - Journal of Universal Computer Science 28, Nr. 10 (28.10.2022): 1003–29. http://dx.doi.org/10.3897/jucs.79777.
Der volle Inhalt der QuelleLiu, Ziyun, und Feiyu Ren. „Algorithm Improvement of Movie Recommendation System based on Hybrid Recommendation Algorithm“. Frontiers in Computing and Intelligent Systems 3, Nr. 3 (17.05.2023): 113–17. http://dx.doi.org/10.54097/fcis.v3i3.8581.
Der volle Inhalt der QuelleManikandan, J. „Movie Recommendation System Mistreatment Current Trends and Sentiment Analysis from Micro Blogging Knowledge“. International Journal for Research in Applied Science and Engineering Technology 9, Nr. 11 (30.11.2021): 393–98. http://dx.doi.org/10.22214/ijraset.2021.38651.
Der volle Inhalt der QuelleSharma, Bharti, Adeel Hashmi, Charu Gupta, Osamah Ibrahim Khalaf, Ghaida Muttashar Abdulsahib und Malakeh Muhyiddeen Itani. „Hybrid Sparrow Clustered (HSC) Algorithm for Top-N Recommendation System“. Symmetry 14, Nr. 4 (11.04.2022): 793. http://dx.doi.org/10.3390/sym14040793.
Der volle Inhalt der QuelleHwang, Tae-Gyu, und Sung Kwon Kim. „Movie Recommendation through Multiple Bias Analysis“. Applied Sciences 11, Nr. 6 (22.03.2021): 2817. http://dx.doi.org/10.3390/app11062817.
Der volle Inhalt der QuelleMir, Jibran, und Azhar Mahmood. „Movie Aspects Identification Model for Aspect Based Sentiment Analysis“. Information Technology And Control 49, Nr. 4 (19.12.2020): 564–82. http://dx.doi.org/10.5755/j01.itc.49.4.25350.
Der volle Inhalt der QuelleZamanzadeh Darban, Zahra, und Mohammad Hadi Valipour. „GHRS: Graph-based hybrid recommendation system with application to movie recommendation“. Expert Systems with Applications 200 (August 2022): 116850. http://dx.doi.org/10.1016/j.eswa.2022.116850.
Der volle Inhalt der QuelleKumar, Keerthi, B. S. Harish und H. K. Darshan. „Sentiment Analysis on IMDb Movie Reviews Using Hybrid Feature Extraction Method“. International Journal of Interactive Multimedia and Artificial Intelligence 5, Nr. 5 (2019): 109. http://dx.doi.org/10.9781/ijimai.2018.12.005.
Der volle Inhalt der QuelleJain, Kirti, Pinaki Ghosh und Shital Gupta. „A Hybrid Model for Sentiment Analysis Based on Movie Review Datasets“. International Journal on Recent and Innovation Trends in Computing and Communication 11, Nr. 5s (07.06.2023): 424–31. http://dx.doi.org/10.17762/ijritcc.v11i5s.7082.
Der volle Inhalt der Quelle