Zeitschriftenartikel zum Thema „HYBRIDIZATION PSO+MSVM ALGORITHM“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "HYBRIDIZATION PSO+MSVM ALGORITHM" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Masrom, Suraya, Abdullah Sani Abd Rahman, Nasiroh Omar und Suriani Rapa’ee. „PSO-GAScript: A Domain-specific Scripting Language for Meta-heuristics Algorithm“. International Journal of Emerging Technology and Advanced Engineering 12, Nr. 7 (04.07.2022): 86–93. http://dx.doi.org/10.46338/ijetae0722_09.
Der volle Inhalt der QuelleGautam, Divya. „SECURING MOBILE ADHOC NETWORKS AND CLOUD ENVIRONMENT“. International Journal of Engineering Technologies and Management Research 5, Nr. 2 (27.04.2020): 84–89. http://dx.doi.org/10.29121/ijetmr.v5.i2.2018.617.
Der volle Inhalt der QuelleWang, Yuheng, Kashif Habib, Abdul Wadood und Shahbaz Khan. „The Hybridization of PSO for the Optimal Coordination of Directional Overcurrent Protection Relays of the IEEE Bus System“. Energies 16, Nr. 9 (26.04.2023): 3726. http://dx.doi.org/10.3390/en16093726.
Der volle Inhalt der QuelleJain, Meetu, Vibha Saihjpal, Narinder Singh und Satya Bir Singh. „An Overview of Variants and Advancements of PSO Algorithm“. Applied Sciences 12, Nr. 17 (23.08.2022): 8392. http://dx.doi.org/10.3390/app12178392.
Der volle Inhalt der QuelleMichaloglou, Alkmini, und Nikolaos L. Tsitsas. „A Brain Storm and Chaotic Accelerated Particle Swarm Optimization Hybridization“. Algorithms 16, Nr. 4 (13.04.2023): 208. http://dx.doi.org/10.3390/a16040208.
Der volle Inhalt der QuelleAdhikari, Ratnadip, und R. K. Agrawal. „Hybridization of Artificial Neural Network and Particle Swarm Optimization Methods for Time Series Forecasting“. International Journal of Applied Evolutionary Computation 4, Nr. 3 (Juli 2013): 75–90. http://dx.doi.org/10.4018/jaec.2013070107.
Der volle Inhalt der QuelleLenin, K. „HYBRIDIZATION OF ANT COLONY ALGORITHM AND PARTICLE SWARM OPTIMIZATION ALGORITHM FOR REDUCTION OF REAL POWER LOSS“. International Journal of Research -GRANTHAALAYAH 6, Nr. 12 (31.12.2018): 121–27. http://dx.doi.org/10.29121/granthaalayah.v6.i12.2018.1092.
Der volle Inhalt der QuelleBi, Ya, Anthony Lam, Huiqun Quan, Hui Liu und Cunfa Wang. „A comprehensively improved particle swarm optimization algotithm to guarantee particle activity“. Izvestiya vysshikh uchebnykh zavedenii. Fizika, Nr. 5 (2021): 94–101. http://dx.doi.org/10.17223/00213411/64/5/94.
Der volle Inhalt der QuelleZhang, Yudong, Shuihua Wang und Genlin Ji. „A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications“. Mathematical Problems in Engineering 2015 (2015): 1–38. http://dx.doi.org/10.1155/2015/931256.
Der volle Inhalt der QuelleXiao, Heng, Yokoya und Toshiharu Hatanaka. „Multifactorial Particle Swarm Optimization Enhanced by Hybridization With Firefly Algorithm“. International Journal of Swarm Intelligence Research 12, Nr. 3 (Juli 2021): 172–87. http://dx.doi.org/10.4018/ijsir.2021070108.
Der volle Inhalt der QuelleCherki, Imene, Abdelkader Chaker, Zohra Djidar, Naima Khalfallah und Fadela Benzergua. „A Sequential Hybridization of Genetic Algorithm and Particle Swarm Optimization for the Optimal Reactive Power Flow“. Sustainability 11, Nr. 14 (16.07.2019): 3862. http://dx.doi.org/10.3390/su11143862.
Der volle Inhalt der QuelleSahli, Z., A. Hamouda, S. Sayah, D. Trentesaux und A. Bekrar. „Efficient Hybrid Algorithm Solution for Optimal Reactive Power Flow Using the Sensitive Bus Approach“. Engineering, Technology & Applied Science Research 12, Nr. 1 (12.02.2022): 8210–16. http://dx.doi.org/10.48084/etasr.4680.
Der volle Inhalt der QuelleGayatri, R., und N. Baskar. „Evaluating Process Parameters of Multi-Pass Turning Process Using Hybrid Genetic Simulated Swarm Algorithm“. Journal of Advanced Manufacturing Systems 14, Nr. 04 (29.09.2015): 215–33. http://dx.doi.org/10.1142/s0219686715500146.
Der volle Inhalt der QuelleJunian, Wahyu Eko, und Hendra Grandis. „HYBRID PARTICLE SWARM OPTIMIZATION AND GREY WOLF OPTIMIZER ALGORITHM FOR CONTROLLED SOURCE AUDIO-FREQUENCY MAGNETOTELLURICS (CSAMT) ONE-DIMENSIONAL INVERSION MODELLING“. Rudarsko-geološko-naftni zbornik 38, Nr. 3 (2023): 65–80. http://dx.doi.org/10.17794/rgn.2023.3.6.
Der volle Inhalt der QuelleXiao, Heng, und Toshiharu Hatanaka. „Model Selecting PSO-FA Hybrid for Complex Function Optimization“. International Journal of Swarm Intelligence Research 12, Nr. 3 (Juli 2021): 215–32. http://dx.doi.org/10.4018/ijsir.2021070110.
Der volle Inhalt der QuelleZheng, Yukun, Ruyue Sun, Yixiang Liu, Yanhong Wang, Rui Song und Yibin Li. „A Hybridization Grey Wolf Optimizer to Identify Parameters of Helical Hydraulic Rotary Actuator“. Actuators 12, Nr. 6 (25.05.2023): 220. http://dx.doi.org/10.3390/act12060220.
Der volle Inhalt der QuelleLenin, K. „BANKS CAPACITOR COMPENSATION FOR CRITICAL NODAL DETECTION BY AUGMENTED RED WOLF OPTIMIZATION ALGORITHM“. International Journal of Research -GRANTHAALAYAH 6, Nr. 10 (31.10.2018): 169–75. http://dx.doi.org/10.29121/granthaalayah.v6.i10.2018.1175.
Der volle Inhalt der QuelleCavalcanti-Júnior, George M., Fernando B. Lima-Neto und Carmelo J. A. Bastos-Filho. „On the Analysis of HPSO Improvement by Use of the Volitive Operator of Fish School Search“. International Journal of Swarm Intelligence Research 4, Nr. 1 (Januar 2013): 62–77. http://dx.doi.org/10.4018/jsir.2013010103.
Der volle Inhalt der QuelleChen, Q., J. Jiang, M. Du, L. Zhou, C. Jing und C. Lu. „A HYBRIDIZATION OF AN IMPROVED PARTICLE SWARM OPTIMIZATION AND FUZZY K-MEANS ALGORITHM FOR HYPERSPECTRAL IMAGE CLASSIFICATION“. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W13 (05.06.2019): 1833–39. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w13-1833-2019.
Der volle Inhalt der QuelleLenin, K. „ACTIVE POWER LOSS DIMINUTION & VOLTAGE STABILITY ENHANCEMENT BY RED WOLF OPTIMIZATION ALGORITHM“. International Journal of Research -GRANTHAALAYAH 6, Nr. 11 (30.11.2018): 355–65. http://dx.doi.org/10.29121/granthaalayah.v6.i11.2018.1139.
Der volle Inhalt der QuelleWu, Tie Bin, Tao Yun Zhou, Wen Li, Gao Feng Zhu und Yun Lian Liu. „Particle Swarm Algorithm Based on Boundary Buffering-Natural Evolution and its Application in Constrained Optimization“. Applied Mechanics and Materials 670-671 (Oktober 2014): 1517–21. http://dx.doi.org/10.4028/www.scientific.net/amm.670-671.1517.
Der volle Inhalt der QuelleKoyuncu, Hasan, und Rahime Ceylan. „A PSO based approach: Scout particle swarm algorithm for continuous global optimization problems“. Journal of Computational Design and Engineering 6, Nr. 2 (27.08.2018): 129–42. http://dx.doi.org/10.1016/j.jcde.2018.08.003.
Der volle Inhalt der QuelleJiang, Shanhe, Chaolong Zhang und Shijun Chen. „Sequential Hybrid Particle Swarm Optimization and Gravitational Search Algorithm with Dependent Random Coefficients“. Mathematical Problems in Engineering 2020 (21.04.2020): 1–17. http://dx.doi.org/10.1155/2020/1957812.
Der volle Inhalt der QuelleBao, Zongfan, Yongquan Zhou, Liangliang Li und Mingzhi Ma. „A Hybrid Global Optimization Algorithm Based on Wind Driven Optimization and Differential Evolution“. Mathematical Problems in Engineering 2015 (2015): 1–20. http://dx.doi.org/10.1155/2015/389630.
Der volle Inhalt der QuelleRosić, Maja, Miloš Sedak, Mirjana Simić und Predrag Pejović. „Chaos-Enhanced Adaptive Hybrid Butterfly Particle Swarm Optimization Algorithm for Passive Target Localization“. Sensors 22, Nr. 15 (31.07.2022): 5739. http://dx.doi.org/10.3390/s22155739.
Der volle Inhalt der QuelleOng, Bun Theang, und Masao Fukushima. „Automatically Terminated Particle Swarm Optimization with Principal Component Analysis“. International Journal of Information Technology & Decision Making 14, Nr. 01 (Januar 2015): 171–94. http://dx.doi.org/10.1142/s0219622014500837.
Der volle Inhalt der QuelleChutani, Sonia, und Jagbir Singh. „Optimal Design of RC Frames using a Modified Hybrid PSOGSA Algorithm“. Archives of Civil Engineering 63, Nr. 4 (01.12.2017): 123–34. http://dx.doi.org/10.1515/ace-2017-0044.
Der volle Inhalt der QuelleTing, T. O., H. C. Ting und T. S. Lee. „Taguchi-Particle Swarm Optimization for Numerical Optimization“. International Journal of Swarm Intelligence Research 1, Nr. 2 (April 2010): 18–33. http://dx.doi.org/10.4018/jsir.2010040102.
Der volle Inhalt der QuelleLenin, K. „REAL POWER LOSS REDUCTION BY ENHANCED ACCLIMATIZED BACTERIAL EXPLORATION ALGORITHM“. International Journal of Research -GRANTHAALAYAH 6, Nr. 3 (31.03.2018): 182–90. http://dx.doi.org/10.29121/granthaalayah.v6.i3.2018.1513.
Der volle Inhalt der QuelleLenin, K. „REAL POWER LOSS REDUCTION & VOLTAGE STABILITY AMPLIFICATION BY HYBRIDIZATION OF RESTARTED SIMULATED ANNEALING WITH PARTICLE SWARM OPTIMIZATION ALGORITHM“. International Journal of Research -GRANTHAALAYAH 6, Nr. 9 (30.09.2018): 246–58. http://dx.doi.org/10.29121/granthaalayah.v6.i9.2018.1229.
Der volle Inhalt der QuelleMammeri, E., A. Ahriche, A. Necaibia und A. Bouraiou. „New MPPT Hybrid Controller based on Genetic Algorithms and Particle Swarm Optimization for Photovoltaic Systems“. International Journal of Circuits, Systems and Signal Processing 17 (06.03.2023): 83–91. http://dx.doi.org/10.46300/9106.2023.17.10.
Der volle Inhalt der QuelleVenkatesan, Chandrasekaran, Raju Kannadasan, Dhanasekar Ravikumar, Vijayaraja Loganathan, Mohammed H. Alsharif, Daeyong Choi, Junhee Hong und Zong Woo Geem. „Re-Allocation of Distributed Generations Using Available Renewable Potential Based Multi-Criterion-Multi-Objective Hybrid Technique“. Sustainability 13, Nr. 24 (12.12.2021): 13709. http://dx.doi.org/10.3390/su132413709.
Der volle Inhalt der QuelleLenin, K. „ACTIVE POWER LOSS REDUCTION BY ASSORTED ALGORITHMS“. International Journal of Research -GRANTHAALAYAH 6, Nr. 5 (31.05.2018): 263–75. http://dx.doi.org/10.29121/granthaalayah.v6.i5.2018.1448.
Der volle Inhalt der QuelleHayat, Iqbal, Adnan Tariq, Waseem Shahzad, Manzar Masud, Shahzad Ahmed, Muhammad Umair Ali und Amad Zafar. „Hybridization of Particle Swarm Optimization with Variable Neighborhood Search and Simulated Annealing for Improved Handling of the Permutation Flow-Shop Scheduling Problem“. Systems 11, Nr. 5 (26.04.2023): 221. http://dx.doi.org/10.3390/systems11050221.
Der volle Inhalt der QuelleAljohani, Tawfiq M., Ahmed F. Ebrahim und Osama Mohammed. „Single and Multiobjective Optimal Reactive Power Dispatch Based on Hybrid Artificial Physics–Particle Swarm Optimization“. Energies 12, Nr. 12 (18.06.2019): 2333. http://dx.doi.org/10.3390/en12122333.
Der volle Inhalt der QuelleDif, Nassima, und Zakaria Elberrichi. „A Novel Dynamic Hybridization Method for Best Feature Selection“. International Journal of Applied Metaheuristic Computing 12, Nr. 2 (April 2021): 85–99. http://dx.doi.org/10.4018/ijamc.2021040106.
Der volle Inhalt der QuelleRamírez-Ochoa, Dynhora-Danheyda, Luis Asunción Pérez-Domínguez, Erwin-Adán Martínez-Gómez und David Luviano-Cruz. „PSO, a Swarm Intelligence-Based Evolutionary Algorithm as a Decision-Making Strategy: A Review“. Symmetry 14, Nr. 3 (24.02.2022): 455. http://dx.doi.org/10.3390/sym14030455.
Der volle Inhalt der QuelleSengupta, Saptarshi, Sanchita Basak und Richard Peters. „Particle Swarm Optimization: A Survey of Historical and Recent Developments with Hybridization Perspectives“. Machine Learning and Knowledge Extraction 1, Nr. 1 (10.10.2018): 157–91. http://dx.doi.org/10.3390/make1010010.
Der volle Inhalt der QuelleLenin, Kanagasabai. „Hybridization of Genetic Particle Swarm Optimization Algorithm with Symbiotic Organisms Search Algorithm for Solving Optimal Reactive Power Dispatch Problem“. Journal of Applied Science, Engineering, Technology, and Education 3, Nr. 1 (20.06.2020): 12–21. http://dx.doi.org/10.35877/454ri.asci31106.
Der volle Inhalt der QuelleUtamima, Amalia, und Angelia Melani Andrian. „Penyelesaian Masalah Penempatan Fasilitas dengan Algoritma Estimasi Distribusi dan Particle Swarm Optimization“. Journal of Information Systems Engineering and Business Intelligence 2, Nr. 1 (29.04.2016): 11. http://dx.doi.org/10.20473/jisebi.2.1.11-16.
Der volle Inhalt der QuelleChopra, Namarta, Y. S. Brar und J. S. Dhillon. „Hybridized Particle Swarm Optimization on Constrained Economic Dispatch Problem“. Journal of Computational and Theoretical Nanoscience 17, Nr. 1 (01.01.2020): 322–28. http://dx.doi.org/10.1166/jctn.2020.8669.
Der volle Inhalt der QuelleSantos, Pitther N., Victor Dmitriev und Karlo Q. da Costa. „Optimization of Modified Yagi-Uda Nanoantenna Arrays Using Adaptive Fuzzy GAPSO“. International Journal of Antennas and Propagation 2021 (17.02.2021): 1–11. http://dx.doi.org/10.1155/2021/8874385.
Der volle Inhalt der QuellePluhacek, Michal, Adam Viktorin, Roman Senkerik, Tomas Kadavy und Ivan Zelinka. „Extended experimental study on PSO with partial population restart based on complex network analysis“. Logic Journal of the IGPL 28, Nr. 2 (01.10.2018): 211–25. http://dx.doi.org/10.1093/jigpal/jzy046.
Der volle Inhalt der QuelleRiaz, Muhammad, Aamir Hanif, Shaik Javeed Hussain, Muhammad Irfan Memon, Muhammad Umair Ali und Amad Zafar. „An Optimization-Based Strategy for Solving Optimal Power Flow Problems in a Power System Integrated with Stochastic Solar and Wind Power Energy“. Applied Sciences 11, Nr. 15 (27.07.2021): 6883. http://dx.doi.org/10.3390/app11156883.
Der volle Inhalt der QuelleMangalampalli, Sudheer, Vamsi Krishna Mangalampalli und Sangram Keshari Swain. „Multi Objective Task Scheduling Algorithm in Cloud Computing Using the Hybridization of Particle Swarm Optimization and Cuckoo Search“. Journal of Computational and Theoretical Nanoscience 17, Nr. 12 (01.12.2020): 5346–57. http://dx.doi.org/10.1166/jctn.2020.9427.
Der volle Inhalt der QuelleABDERRAHIM, ALLANI, EL-GHAZALI TALBI und MELLOULI KHALED. „HYBRIDIZATION OF GENETIC AND QUANTUM ALGORITHM FOR GENE SELECTION AND CLASSIFICATION OF MICROARRAY DATA“. International Journal of Foundations of Computer Science 23, Nr. 02 (Februar 2012): 431–44. http://dx.doi.org/10.1142/s0129054112400217.
Der volle Inhalt der QuelleHachimi, H., S. Assif, Y. Aoues, Abdelkhalak El Hami, Rachid Ellaia und M. Agouzoul. „Optimization of the Solder Joints of an Electronic Card Using Heuristic Algorithm“. International Journal of Engineering Research in Africa 30 (Mai 2017): 39–48. http://dx.doi.org/10.4028/www.scientific.net/jera.30.39.
Der volle Inhalt der QuelleHameed, Mohammed Majeed, Mustafa Abbas Abed, Nadhir Al-Ansari und Mohamed Khalid Alomar. „Predicting Compressive Strength of Concrete Containing Industrial Waste Materials: Novel and Hybrid Machine Learning Model“. Advances in Civil Engineering 2022 (23.03.2022): 1–19. http://dx.doi.org/10.1155/2022/5586737.
Der volle Inhalt der QuelleSabeti, Malihe, Laleh Karimi, Naemeh Honarvar, Mahsa Taghavi und Reza Boostani. „QUANTUMIZED GENETIC ALGORITHM FOR SEGMENTATION AND OPTIMIZATION TASKS“. Biomedical Engineering: Applications, Basis and Communications 32, Nr. 03 (Juni 2020): 2050022. http://dx.doi.org/10.4015/s1016237220500222.
Der volle Inhalt der QuelleLakhbab, Halima. „A Novel Hybrid Approach for Optimizing the Localization of Wireless Sensor Networks“. MATEC Web of Conferences 200 (2018): 00005. http://dx.doi.org/10.1051/matecconf/201820000005.
Der volle Inhalt der Quelle