Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „HYPER SPECTRAL IMAGE CLASSIFICATION“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "HYPER SPECTRAL IMAGE CLASSIFICATION" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "HYPER SPECTRAL IMAGE CLASSIFICATION"
HUANG Hong, 黄. 鸿., 陈美利 CHEN Mei-li, 段宇乐 DUAN Yu-le und 石光耀 SHI Guang-yao. „Hyper-spectral image classification using spatial-spectral manifold reconstruction“. Optics and Precision Engineering 26, Nr. 7 (2018): 1827–36. http://dx.doi.org/10.3788/ope.20182607.1827.
Der volle Inhalt der QuelleJavadi, P. „USE SATELLITE IMAGES AND IMPROVE THE ACCURACY OF HYPERSPECTRAL IMAGE WITH THE CLASSIFICATION“. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-1-W5 (11.12.2015): 343–49. http://dx.doi.org/10.5194/isprsarchives-xl-1-w5-343-2015.
Der volle Inhalt der QuelleAlhayani, Bilal, und Haci Ilhan. „Hyper spectral Image classification using Dimensionality Reduction Techniques“. IJIREEICE 5, Nr. 4 (15.04.2017): 71–74. http://dx.doi.org/10.17148/ijireeice.2017.5414.
Der volle Inhalt der QuelleSharif, I., und S. Khare. „Comparative Analysis of Haar and Daubechies Wavelet for Hyper Spectral Image Classification“. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-8 (28.11.2014): 937–41. http://dx.doi.org/10.5194/isprsarchives-xl-8-937-2014.
Der volle Inhalt der QuelleShanmugapriya, G., und . „An Efficient Spectral Spatial Classification for Hyper Spectral Images“. International Journal of Engineering & Technology 7, Nr. 3.12 (20.07.2018): 1050. http://dx.doi.org/10.14419/ijet.v7i3.12.17630.
Der volle Inhalt der QuelleBanit', Ibtissam, N. A. ouagua, Mounir Ait Kerroum, Ahmed Hammouch und Driss Aboutajdine. „Band selection by mutual information for hyper-spectral image classification“. International Journal of Advanced Intelligence Paradigms 8, Nr. 1 (2016): 98. http://dx.doi.org/10.1504/ijaip.2016.074791.
Der volle Inhalt der QuelleTANG Yan-hui, 唐艳慧, 赵鹏 ZHAO Peng und 王承琨 WANG Cheng-kun. „Texture classification algorithm of wood hyper-spectral image based on multi-fractal spectra“. Chinese Journal of Liquid Crystals and Displays 34, Nr. 12 (2019): 1182–90. http://dx.doi.org/10.3788/yjyxs20193412.1182.
Der volle Inhalt der QuelleLavanya, K., R. Jaya Subalakshmi, T. Tamizharasi, Lydia Jane und Akila Victor. „Unsupervised Unmixing and Segmentation of Hyper Spectral Images Accounting for Soil Fertility“. Scalable Computing: Practice and Experience 23, Nr. 4 (23.12.2022): 291–301. http://dx.doi.org/10.12694/scpe.v23i4.2031.
Der volle Inhalt der QuelleZhang, Tianxiang, Wenxuan Wang, Jing Wang, Yuanxiu Cai, Zhifang Yang und Jiangyun Li. „Hyper-LGNet: Coupling Local and Global Features for Hyperspectral Image Classification“. Remote Sensing 14, Nr. 20 (20.10.2022): 5251. http://dx.doi.org/10.3390/rs14205251.
Der volle Inhalt der QuelleLi, Runya, und Shenglian Li. „Multimedia Image Data Analysis Based on KNN Algorithm“. Computational Intelligence and Neuroscience 2022 (12.04.2022): 1–8. http://dx.doi.org/10.1155/2022/7963603.
Der volle Inhalt der QuelleDissertationen zum Thema "HYPER SPECTRAL IMAGE CLASSIFICATION"
Kliman, Douglas Hartley. „Rule-based classification of hyper-temporal, multi-spectral satellite imagery for land-cover mapping and monitoring“. Diss., The University of Arizona, 1996. http://hdl.handle.net/10150/187473.
Der volle Inhalt der QuelleFalco, Nicola. „Advanced Spectral and Spatial Techniques for Hyperspectral Image Analysis and Classification“. Doctoral thesis, Università degli studi di Trento, 2015. https://hdl.handle.net/11572/369072.
Der volle Inhalt der QuelleFalco, Nicola. „Advanced Spectral and Spatial Techniques for Hyperspectral Image Analysis and Classification“. Doctoral thesis, University of Trento, 2015. http://eprints-phd.biblio.unitn.it/1421/1/PhD_Nicola_Trento.pdf.
Der volle Inhalt der QuelleJia, Xiuping Electrical Engineering Australian Defence Force Academy UNSW. „Classification techniques for hyperspectral remote sensing image data“. Awarded by:University of New South Wales - Australian Defence Force Academy. School of Electrical Engineering, 1996. http://handle.unsw.edu.au/1959.4/38713.
Der volle Inhalt der QuellePrasert, Sunyaruk. „Multi angle imaging with spectral remote sensing for scene classification“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2005. http://library.nps.navy.mil/uhtbin/hyperion/05Mar%5FPrasert.pdf.
Der volle Inhalt der QuelleThesis Advisor(s): Richard C. Olsen. Includes bibliographical references (p. 95-97). Also available online.
Alam, Fahim Irfan. „Deep Feature Learning for Spectral-Spatial Classification of Hyperspectral Remote Sensing Images“. Thesis, Griffith University, 2019. http://hdl.handle.net/10072/386535.
Der volle Inhalt der QuelleThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Info & Comm Tech
Science, Environment, Engineering and Technology
Full Text
Hoarau, Romain. „Rendu interactif d'image hyper spectrale par illumination globale pour la prédiction de la signature infrarouge d'aéronefs“. Electronic Thesis or Diss., Aix-Marseille, 2019. http://theses.univ-amu.fr.lama.univ-amu.fr/191219_HOARAU_358wfqq893efe918esmfu405fjhqvj_TH.pdf.
Der volle Inhalt der QuelleSensor dimensioning is a major issue for the aircraft detection field. In this vein, it is appropriate to simulate these sensorsvia models and a consequent set of spectral images. The acquisition of these images via an airborne measure campaign is unfortunately costly and difficult. A robust and fast simulation of these data is hence very appealing.In order to answer these needs, global illumination methods in high spectral dimension are used. In these circumstances,these methods raise serious issues in term of memory consumption and of computing time. Our research project focuses on these problematics.In the first instance, we have focused on the Path Tracing method and its GPU parallelization for the spectral image rendering. We have investigated at first the issues of this kind of rendering on the GPU. Then we have proposed a new method and an efficient spectral parallelization pattern which allows us to reduce significantly the memory consumption and thecomputing time.In the second phase, we have investigated how to reduce the spectral computational load of the simulation. Inthat sense, we have proposed to generalize the stochastic spectral rendering of color (XYZ) image to the stochastic spectral image rendering. This new method renders directly the channels of a sensor which allows us to reduce the memory andthe computing requirements by reducing the spectral computational load of the simulation.To sum up, the works of this thesis allows us to simulate accurately multi, hyper and ultra spectral images. The interactive time can be achieved in our case in multi and hyper spectral resolution
Behmo, Régis. „Visual feature graphs and image recognition“. Phd thesis, Ecole Centrale Paris, 2010. http://tel.archives-ouvertes.fr/tel-00545419.
Der volle Inhalt der QuelleTso, Brandt C. K. „An investigation of alternative strategies for incorporating spectral, textural, and contextual information in remote sensing image classification“. Thesis, University of Nottingham, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387663.
Der volle Inhalt der QuelleRajadell, Rojas Olga. „Data selection and spectral-spatial characterisation for hyperspectral image segmentation. Applications to remote sensing“. Doctoral thesis, Universitat Jaume I, 2013. http://hdl.handle.net/10803/669093.
Der volle Inhalt der QuelleLately image analysis have aided many discoveries in research. This thesis focusses on the analysis of remote sensed images for aerial inspection. It tackles the problem of segmentation and classification according to land usage. In this field, the use of hyperspectral images has been the trend followed since the emergence of hyperspectral sensors. This type of images improves the performance of the task but raises some issues. Two of those issues are the dimensionality and the interaction with experts. We propose enhancements overcome them. Efficiency and economic reasons encouraged to start this work. The enhancements introduced in this work allow to tackle segmentation and classification of this type of images using less data, thus increasing the efficiency and enabling the design task specific sensors which are cheaper. Also, our enhacements allow to perform the same task with less expert collaboration which also decreases the costs and accelerates the process.
Bücher zum Thema "HYPER SPECTRAL IMAGE CLASSIFICATION"
Hyperspectral imaging: Techniques for spectral detection and classification. New York: Kluwer Academic/Plenum Publishers, 2003.
Den vollen Inhalt der Quelle findenChang, Chein-I. Hyperspectral Imaging: Techniques for Spectral Detection and Classification. Springer, 2003.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "HYPER SPECTRAL IMAGE CLASSIFICATION"
Priyadharshini @ Manisha, K., und B. Sathya Bama. „Hyper-Spectral Image Classification with Support Vector Machine“. In Advances in Automation, Signal Processing, Instrumentation, and Control, 587–93. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8221-9_51.
Der volle Inhalt der QuelleYu, Yi, Yi-Fan Li, Jun-Bao Li, Jeng-Shyang Pan und Wei-Min Zheng. „The Election of Spectrum bands in Hyper-spectral image classification“. In Advances in Intelligent Information Hiding and Multimedia Signal Processing, 3–10. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-50212-0_1.
Der volle Inhalt der QuelleVaddi, Radhesyam, und Prabukumar Manoharan. „Probabilistic PCA Based Hyper Spectral Image Classification for Remote Sensing Applications“. In Advances in Intelligent Systems and Computing, 863–69. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16660-1_84.
Der volle Inhalt der QuelleChi, Tao, Yang Wang, Ming Chen und Manman Chen. „Hyper-Spectral Image Classification by Multi-layer Deep Convolutional Neural Networks“. In Advances in Intelligent Systems and Computing, 861–76. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29516-5_65.
Der volle Inhalt der QuelleYang, Ming-Der, Kai-Siang Huang, Ji-Yuan Lin und Pei Liu. „Application of Support Vector Machines to Airborne Hyper-Spectral Image Classification“. In Lecture Notes in Electrical Engineering, 439–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12990-2_50.
Der volle Inhalt der QuelleGadhave, Rajashree, und R. R. Sedamkar. „Automated Classification of Hyper Spectral Image Using Supervised Machine Learning Approach“. In Lecture Notes in Electrical Engineering, 763–75. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4831-2_63.
Der volle Inhalt der QuellePanchal, Soumyashree M., und Shivaputra. „Object Classification from a Hyper Spectral Image Using Spectrum Bands with Wavelength and Feature Set“. In Software Engineering and Algorithms, 340–50. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77442-4_29.
Der volle Inhalt der QuelleVatsavayi, Valli Kumari, Saritha Hepsibha Pilli und Charishma Bobbili. „Performance Analysis of Discrete Wavelets in Hyper Spectral Image Classification: A Deep Learning Approach“. In Proceedings of International Conference on Computational Intelligence and Data Engineering, 387–99. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0609-3_27.
Der volle Inhalt der QuelleRaju, Kalidindi Kishore, G. P. Saradhi Varma und Davuluri Rajyalakshmi. „A Comprehensive Review on Effect of Band Selection on the Recital of Hyper-spectral Image Classification“. In Lecture Notes in Electrical Engineering, 303–20. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3828-5_33.
Der volle Inhalt der QuelleMei, Zhiming, Long Wang und Cen Guo. „Hyper-spectral Images Classification Based on 3D Convolution Neural Networks for Remote Sensing“. In Communications in Computer and Information Science, 205–14. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5937-8_21.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "HYPER SPECTRAL IMAGE CLASSIFICATION"
Shabna, A., und R. Ganesan. „HSEG and PCA for hyper-spectral image classification“. In 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT). IEEE, 2014. http://dx.doi.org/10.1109/iccicct.2014.6992927.
Der volle Inhalt der QuelleSharma, Sanatan, Akashdeep Goel, Omkar Gune, Biplab Banerjee und Subhasis Chaudhuri. „Class Specific Coders for Hyper-Spectral Image Classification“. In 2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, 2018. http://dx.doi.org/10.1109/icip.2018.8451637.
Der volle Inhalt der QuelleMahendren, Sutharsan, Tharindu Fernando, Sridha Sridharan, Peyman Moghadam und Clinton Fookes. „Reduction of Feature Contamination for Hyper Spectral Image Classification“. In 2021 Digital Image Computing: Techniques and Applications (DICTA). IEEE, 2021. http://dx.doi.org/10.1109/dicta52665.2021.9647153.
Der volle Inhalt der QuellePrigent, Sylvain, Xavier Descombes, Didier Zugaj und Josiane Zerubia. „Spectral analysis and unsupervised SVM classification for skin hyper-pigmentation classification“. In 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). IEEE, 2010. http://dx.doi.org/10.1109/whispers.2010.5594917.
Der volle Inhalt der QuelleThapliyal, Ankita. „Deep Intensified Archetypical CNN Approach for Hyper Spectral Image Classification“. In 2021 Asian Conference on Innovation in Technology (ASIANCON). IEEE, 2021. http://dx.doi.org/10.1109/asiancon51346.2021.9544875.
Der volle Inhalt der QuelleThapliyal, Ankita. „Deep Intensified Archetypical CNN Approach for Hyper Spectral Image Classification“. In 2021 Asian Conference on Innovation in Technology (ASIANCON). IEEE, 2021. http://dx.doi.org/10.1109/asiancon51346.2021.9544875.
Der volle Inhalt der QuelleSawant, Shrutika S., und M. Prabukumar. „Semi-supervised techniques based hyper-spectral image classification: A survey“. In 2017 Innovations in Power and Advanced Computing Technologies (i-PACT). IEEE, 2017. http://dx.doi.org/10.1109/ipact.2017.8244999.
Der volle Inhalt der QuelleSu, Zhenyu, und xiuying zhao. „Using deep learning in image hyper spectral segmentation, classification, and detection“. In Fourth Seminar on Novel Optoelectronic Detection Technology and Application, herausgegeben von Weiqi Jin und Ye Li. SPIE, 2018. http://dx.doi.org/10.1117/12.2307376.
Der volle Inhalt der QuelleMallapragada, Srivatsa, und Chih-Cheng Hung. „Statistical Perspective of SOM and CSOM for Hyper-Spectral Image Classification“. In IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2020. http://dx.doi.org/10.1109/igarss39084.2020.9324200.
Der volle Inhalt der QuelleUllah, Shan, und Deok-Hwan Kim. „Benchmarking Jetson Platform for 3D Point-Cloud and Hyper-Spectral Image Classification“. In 2020 IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE, 2020. http://dx.doi.org/10.1109/bigcomp48618.2020.00-21.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "HYPER SPECTRAL IMAGE CLASSIFICATION"
Guindon, B. Combining Diverse Spectral, Spatial and Contextual Attributes in Segment-Based Image Classification. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2000. http://dx.doi.org/10.4095/219634.
Der volle Inhalt der QuelleBurks, Thomas F., Victor Alchanatis und Warren Dixon. Enhancement of Sensing Technologies for Selective Tree Fruit Identification and Targeting in Robotic Harvesting Systems. United States Department of Agriculture, Oktober 2009. http://dx.doi.org/10.32747/2009.7591739.bard.
Der volle Inhalt der QuelleDelwiche, Michael, Yael Edan und Yoav Sarig. An Inspection System for Sorting Fruit with Machine Vision. United States Department of Agriculture, März 1996. http://dx.doi.org/10.32747/1996.7612831.bard.
Der volle Inhalt der QuelleBonfil, David J., Daniel S. Long und Yafit Cohen. Remote Sensing of Crop Physiological Parameters for Improved Nitrogen Management in Semi-Arid Wheat Production Systems. United States Department of Agriculture, Januar 2008. http://dx.doi.org/10.32747/2008.7696531.bard.
Der volle Inhalt der Quelle