Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Hypoxia regulators“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Hypoxia regulators" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Hypoxia regulators"
Barth, Dominik A., Felix Prinz, Julia Teppan, Katharina Jonas, Christiane Klec und Martin Pichler. „Long-Noncoding RNA (lncRNA) in the Regulation of Hypoxia-Inducible Factor (HIF) in Cancer“. Non-Coding RNA 6, Nr. 3 (06.07.2020): 27. http://dx.doi.org/10.3390/ncrna6030027.
Der volle Inhalt der QuelleCummins, Eoin P., und Cormac T. Taylor. „Hypoxia and inflammation“. Biochemist 39, Nr. 4 (01.08.2017): 34–36. http://dx.doi.org/10.1042/bio03904034.
Der volle Inhalt der QuelleStichternoth, Catrin, und Joachim F. Ernst. „Hypoxic Adaptation by Efg1 Regulates Biofilm Formation by Candida albicans“. Applied and Environmental Microbiology 75, Nr. 11 (03.04.2009): 3663–72. http://dx.doi.org/10.1128/aem.00098-09.
Der volle Inhalt der QuelleWomeldorff, Matthew, David Gillespie und Randy L. Jensen. „Hypoxia-inducible factor–1 and associated upstream and downstream proteins in the pathophysiology and management of glioblastoma“. Neurosurgical Focus 37, Nr. 6 (Dezember 2014): E8. http://dx.doi.org/10.3171/2014.9.focus14496.
Der volle Inhalt der QuelleBracken, C. P., M. L. Whitelaw und D. J. Peet. „The hypoxia-inducible factors: key transcriptional regulators of hypoxic responses“. Cellular and Molecular Life Sciences (CMLS) 60, Nr. 7 (01.07.2003): 1376–93. http://dx.doi.org/10.1007/s00018-003-2370-y.
Der volle Inhalt der QuelleLu, Xin, und Yibin Kang. „Hypoxia and Hypoxia-Inducible Factors: Master Regulators of Metastasis“. Clinical Cancer Research 16, Nr. 24 (20.10.2010): 5928–35. http://dx.doi.org/10.1158/1078-0432.ccr-10-1360.
Der volle Inhalt der QuelleLi, Xiaochen, Yuanzhou He, Yongjian Xu, Xiaomin Huang, Jin Liu, Min Xie und Xiansheng Liu. „KLF5 mediates vascular remodeling via HIF-1α in hypoxic pulmonary hypertension“. American Journal of Physiology-Lung Cellular and Molecular Physiology 310, Nr. 4 (15.02.2016): L299—L310. http://dx.doi.org/10.1152/ajplung.00189.2015.
Der volle Inhalt der QuelleCatrina, Sergiu-Bogdan, und Xiaowei Zheng. „Hypoxia and hypoxia-inducible factors in diabetes and its complications“. Diabetologia 64, Nr. 4 (26.01.2021): 709–16. http://dx.doi.org/10.1007/s00125-021-05380-z.
Der volle Inhalt der QuelleKabakov, Alexander E., und Anna O. Yakimova. „Hypoxia-Induced Cancer Cell Responses Driving Radioresistance of Hypoxic Tumors: Approaches to Targeting and Radiosensitizing“. Cancers 13, Nr. 5 (04.03.2021): 1102. http://dx.doi.org/10.3390/cancers13051102.
Der volle Inhalt der QuelleTitova, O. N., N. A. Kuzubova und E. S. Lebedeva. „The role of the hypoxia signaling pathway in cellular adaptation to hypoxia“. Russian Medical Inquiry 4, Nr. 4 (2020): 207–13. http://dx.doi.org/10.32364/2587-6821-2020-4-4-207-213.
Der volle Inhalt der QuelleDissertationen zum Thema "Hypoxia regulators"
Gurevich, Rhonna Michelle. „Molecular regulators of hypoxia mediated apoptosis in ventricular myocytes“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0023/MQ51721.pdf.
Der volle Inhalt der QuelleKolodziejski, Jakub. „Twist proteins as oxidative and hypoxic stress regulators“. Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTS008/document.
Der volle Inhalt der QuelleTwist1 and Twist2 are related transcription factors that play major roles both during embryonic development and in several pathologies, including cancer. Twists' oncogenic potential arises from a combination of their multiple functions in development. Notably, both Twist induce epithelial-to mesenchymal transition, thus promoting tumour invasiveness and possibly conferring to cells self-renewal properties. Furthermore, through disruption of both Rb- and p53-driven pathways, Twist override two major oncogene-induced fail-safe programs, namely senescence and apoptosis, thereby promoting malignant conversion. Twist has also been reported to participate in acquisition of drug resistance and in promotion of neo-angiogenesis.Current knowledge of pleiotropic activities of Twist prompted us to postulate that these factors may be major regulators of stress response. Cancer cells survive and grow within a continuously changing environment that creates multiple stresses to which they must adapt in order to survive and strive. Such adaptations often give rise to the acquisition of an aggressive phenotype. Consistent with this hypothesis, we recently unveiled new activities of Twist proteins that are related to stress response. We have shown that Twist regulates response to oxidative stress, a condition exacerbated in cancer by stimuli such as inflammation, increased cellular metabolism and changes in tumour oxygenation. Our work has contributed to the understanding of molecular mechanisms through which Twist diminishes cellular ROS and thus participates in the escape from apoptosis and senescence. In the first part of my thesis, I worked on the antioxidant activity of Twist and described its molecular mechanisms.The second part of my work addressed the impact of Twist proteins on cellular response to hypoxia that is insufficient oxygen supply, frequently found in solid tumours. Cellular response to hypoxic stress relies on stabilization and activation of HIF1α, a key transcriptional mediator of the hypoxic response, regulating numerous genes involved in glucose metabolism, oxygen transport, angiogenesis, cell growth and apoptosis. HIF1α is beneficial for cancer cells in response to short hypoxic episodes, however its sustained activation in case of prolonged hypoxia may push cancer cells towards apoptosis. In this context, we have shown that Twist protects cancer cells from hypoxia-induced apoptosis. We have discovered HIF1α and Twist physically interact, suggesting a possible mechanistic basis for Twist's protective effect. These results led us to postulate that Twist plays a role in cellular response to hypoxia and thus participates in cancer cell adaptation and acquisition of aggressive phenotypes triggered by lack of oxygen.Our results reinforce the notion that Twist factors are major cellular stress modulators that might be important for adaptation of cancer cells to changing conditions in the process of tumour progression
White, Carine Petris Michael J. „Inflammation and hypoxia novel regulators of mammalian copper homeostasis in macrophages /“. Diss., Columbia, Mo. : University of Missouri--Columbia, 2008. http://hdl.handle.net/10355/6624.
Der volle Inhalt der QuellePeurala, E. (Emmi). „Regulators of hypoxia response and the cell cycle in breast cancer“. Doctoral thesis, Oulun yliopisto, 2013. http://urn.fi/urn:isbn:9789526202709.
Der volle Inhalt der QuelleTiivistelmä Rintasyöpä on naisten yleisin syöpä läntisessä maailmassa. Rintasyöpä on heterogeeninen tautiryhmä, jossa kasvaimet vaihtelevat biologiselta käyttäytymiseltään huomattavasti. Tästä syystä on tärkeää erottaa hyvä- ja huonoennusteiset potilaat. Syöpälääkärit käyttävät klassisia ennustetekijöitä hoitopäätöksiä tehdessään, mutta lisääntynyt tieto rintasyövän biologiasta on saanut aikaan tarpeen löytää uusia ennustetekijöitä. Tässä väitöskirjatyössä tutkimme hypoksiavasteen ja solusyklin säätelijöiden ennusteellisuutta duktaalisessa rintasyövässä sekä kolmoisnegatiivisessa (ei ilmennä hormonireseptoreita eikä epidermaalikasvutekijäreseptoria) rintasyövässä. PHD2 ja PHD3:n vahva ilmentyminen liittyi parempaan ennusteeseen, mutta PHD1:n esiintymisen vaikutus oli ristiriitainen. PHD1:n ilmentyminen liittyi lisääntyneeseen solujakautumiseen duktaalisessa rintasyövässä, mutta kolmoisnegatiivisessa rintasyövässä sen esiintyminen liittyi vähentyneeseen imusolmukemetastasointiin. Tutkimuksessamme HIF-1α osoittautui huonon ennusteen merkiksi. Sitä vastoin HIF-2α:n ilmentymisen vaikutus näytti liittyvän parempaan ennusteeseen. Tuloksemme osoittavat, että PHD-entsyymeillä on mahdollisesti muitakin kohteita kuin HIF-α:t. Osoitimme myös, että HIF-1α:n ilmentyminen on yleisempää ja HIF-2α:n sekä PHD3:n ilmentyminen vähäisempää kolmoisnegatiivisessa kuin duktaalisessa rintasyövässä. Lisäksi totesimme, että sykliini D1 on itsenäinen ennustetekijä liittyen parempaan ennusteeseen duktaalisessa rintasyövässä. Huomioitavaa on kuitenkin, että kolmoisnegatiivisessa rintasyövän alaryhmässä sykliini D1:n esiintyminen oli huonon ennusteen merkki. CDK4 osoittautui voimakkaan proliferaation merkiksi kolmoisnegatiivisessa rintasyövässä. Lisäksi osoitimme, että p16:n ilmentyminen liittyy parempaan ennusteeseen sekä duktaalisessa rintasyövässä että kolmoisnegatiivisessa rintasyövässä
Catrina, Sergiu-Bogdan. „Regulators of angiogenesis in diabetes and tumors /“. Stockholm, 2005. http://diss.kib.ki.se/2005/91-628-6682-6/.
Der volle Inhalt der QuelleCamus, Victoria Louise. „Investigating the effects of chemotherapy and radiation therapy in a prostate cancer model system using SERS nanosensors“. Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/25386.
Der volle Inhalt der QuelleGuimbellot, Jennifer S. „Role of hypoxia in epithelial gene regulation“. Thesis, Birmingham, Ala. : University of Alabama at Birmingham, 2007. https://www.mhsl.uab.edu/dt/2009r/guimbellot.pdf.
Der volle Inhalt der QuelleREYNOLDS, PAUL R. „MIDKINE (MK) REGULATES PULMONARY VASCULAR REMODELING DURING HYPOXIA“. University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1085492908.
Der volle Inhalt der QuelleHsu, Fu-Chiun. „Construction of transcriptional regulatory pathways associated with hypoxia in Arabidopsis“. Diss., University of Iowa, 2011. https://ir.uiowa.edu/etd/1231.
Der volle Inhalt der QuelleBatie, Michael. „Role of chromatin structure and JmjC histone demethylases in the response to hypoxia“. Thesis, University of Dundee, 2017. https://discovery.dundee.ac.uk/en/studentTheses/ce1fbbd7-d3be-49c2-a89e-46b739236887.
Der volle Inhalt der QuelleBücher zum Thema "Hypoxia regulators"
Jamie, Goode, Chadwick Derek, Novartis Foundation und Symposium on the Tumour Microenvironment: Causes and Consequences of Hypoxia and Acidity (2000 : London, England), Hrsg. The tumour microenvironment: Causes and consequences of hypoxia and acidity. Chichester: Wiley, 2001.
Den vollen Inhalt der Quelle findenThe Tumour Microenvironment - No. 240: Causes and Consequences of Hypoxia and Acidity (Novartis Foundation Symposia). Wiley, 2001.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Hypoxia regulators"
Acker, Till, und Karl H. Plate. „Hypoxia and Hypoxia Inducible Factors (HIF) as Important Regulators of Tumor Physiology“. In Cancer Treatment and Research, 219–48. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-8871-3_14.
Der volle Inhalt der QuelleImtiyaz, Hongxia Z., und M. Celeste Simon. „Hypoxia-Inducible Factors as Essential Regulators of Inflammation“. In Current Topics in Microbiology and Immunology, 105–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/82_2010_74.
Der volle Inhalt der QuelleAhmad, Aftab, Carl W. White und Shama Ahmad. „Hypoxia-Inducible Factors and Adenosine Signaling in Vascular Growth“. In Extracellular ATP and Adenosine as Regulators of Endothelial Cell Function, 113–24. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3435-9_7.
Der volle Inhalt der QuelleWatt, Suzanne M., Grigorios Tsaknakis, Sinead P. Forde und Lee Carpenter. „Stem Cells, Hypoxia and Hypoxia-Inducible Factors“. In Regulatory Networks in Stem Cells, 211–31. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-227-8_18.
Der volle Inhalt der QuelleMkrtchian, Souren, Kian Leong Lee, Jessica Kåhlin, Anette Ebberyd, Lorenz Poellinger, Malin Jonsson Fagerlund und Lars I. Eriksson. „Hypoxia Regulates MicroRNA Expression in the Human Carotid Body“. In Advances in Experimental Medicine and Biology, 25–33. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91137-3_3.
Der volle Inhalt der QuelleAbraham, R. T. „mTOR as a Positive Regulator of Tumor Cell Responses to Hypoxia“. In Current Topics in Microbiology and Immunology, 299–319. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18930-2_18.
Der volle Inhalt der QuelleConrad, P. William, David E. Millhorn und Dana Beitner-Johnson. „Hypoxia Differentially Regulates the Mitogen- and Stress-Activated Protein Kinases“. In Oxygen Sensing, 293–302. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-46825-5_28.
Der volle Inhalt der QuelleMishra, Aastha, und M. A. Qadar Pasha. „HIF-1 and EGLN1 Under Hypobaric Hypoxia: Regulation of Master Regulator Paradigm“. In Translational Research in Environmental and Occupational Stress, 81–91. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1928-6_8.
Der volle Inhalt der QuelleGerasimovskaya, Evgenia V., Kurt R. Stenmark und Gennady G. Yegutkin. „Role of Purine-Converting Ecto-Enzymes in Angiogenic Phenotype of Pulmonary Artery Adventitial Vasa Vasorum Endothelial Cells of Chronically Hypoxic Calves“. In Extracellular ATP and Adenosine as Regulators of Endothelial Cell Function, 73–93. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3435-9_5.
Der volle Inhalt der QuelleHochachka, P. W. „Metabolic Key to Hypoxia Tolerance: Loss of Regulatory Links Between the Electron Transfer System and Glycolysis“. In Integration of Mitochondrial Function, 623–27. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2551-0_60.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Hypoxia regulators"
Yang, Chunzhang, Herui Wang, Karel Pacak und Zhengping Zhuang. „Abstract 3943: Genetic abnormalites in hypoxia sensing regulators cause human pheochromocytoma/paraganglioma and plolycythemia syndrome“. In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-3943.
Der volle Inhalt der QuelleKingston, John, Geoffrey Grandjean, Geoffrey Bartholomeusz, Brian P. James, Laura Gumbiner-Russo, Mei Koh und Garth Powis. „Abstract 5505: A genome-wide siRNA screen for novel regulators of HIF-1α activity in normoxia and hypoxia“. In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-5505.
Der volle Inhalt der QuelleOppegard, Shawn C., und David T. Eddington. „Modulation of Oxygen Tensions via Microfabricated Devices“. In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53093.
Der volle Inhalt der QuelleLi, J., S. Bevans-Fonti, LA Shimoda, GL Semenza und VY Polotsky. „Hypoxia Up-Regulates Genes of Lipid Biosynthesis Via Hypoxia Inducible Factor 1 (HIF-1).“ In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a5333.
Der volle Inhalt der QuelleGreville, Gordon, Esther Llop, Rosa Peracaula Miró, Amanda McCann, Pauline M. Rudd und Radka Saldova. „Abstract 2423: Hypoxia regulates tumor cell invasiveness through altered glycosylation“. In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-2423.
Der volle Inhalt der QuelleDas, Tuhin, Alexandra Pisklakova, Zhaoliang Fei und Yulia Nefedova. „Abstract 1534: Hes1 regulates hypoxia induced chemoresistance of myeloma cells“. In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-1534.
Der volle Inhalt der QuelleDabral, Swati, Christian Muecke, Chanil Valsarajan, Mario Schmoranzer, Astrid Wietelmann, Norbert Weissmann, Rajkumar Savai, Werner Seeger, Reinhard Dammann und Soni Savai Pullamsetti. „RASSF1A regulates ROS-HIF axis in hypoxia driven pulmonary hypertension“. In ERS International Congress 2016 abstracts. European Respiratory Society, 2016. http://dx.doi.org/10.1183/13993003.congress-2016.oa3008.
Der volle Inhalt der QuelleGao, Xuefeng, Chwanrow K. Baban, Mark Tangney und Sabin Tabirca. „Computer simulation of hypoxia regulates avascular tumor growth through p27 expression“. In 2011 IEEE/ICME International Conference on Complex Medical Engineering - CME 2011. IEEE, 2011. http://dx.doi.org/10.1109/iccme.2011.5876697.
Der volle Inhalt der QuelleSanthosh, K., S. Zhang und S. Dakshinamurti. „Palmitoylation of Pulmonary Arterial Thromboxane Receptor Regulates Receptor Hyperresponsiveness in Hypoxia.“ In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a2479.
Der volle Inhalt der QuelleManzo, Nicholas D., und Barry R. Stripp. „Hypoxia Regulates The Clonogenic And Differentiation Potentials Of Airway Progenitor Cells“. In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a6333.
Der volle Inhalt der Quelle