Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Imaging process evaluation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Imaging process evaluation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Imaging process evaluation"
Larsson, Joakim, Anton Jansson und Patrik Karlsson. „Monitoring and evaluation of the wire drawing process using thermal imaging“. International Journal of Advanced Manufacturing Technology 101, Nr. 5-8 (28.11.2018): 2121–34. http://dx.doi.org/10.1007/s00170-018-3021-7.
Der volle Inhalt der QuelleYONEMOCHI, Etsuo. „Evaluation of the Manufacturing Process for Pharmaceuticals by Using Micro-imaging Analysis“. Oleoscience 17, Nr. 8 (2017): 379–85. http://dx.doi.org/10.5650/oleoscience.17.379.
Der volle Inhalt der QuelleLye, Carolyn T., Harlan M. Krumholz, Jillian E. Eckroate, Jodi G. Daniel, Dave deBronkart, Marilyn K. Mann, Allen L. Hsiao und Howard P. Forman. „Evaluation of the Patient Request Process for Radiology Imaging in U.S. Hospitals“. Radiology 292, Nr. 2 (August 2019): 409–13. http://dx.doi.org/10.1148/radiol.2019190473.
Der volle Inhalt der QuelleMakein, Lisa J., Linda H. Kidder, E. Neil Lewis und Maurizio Valleri. „Non-Destructive Evaluation of Manufacturing Process Changes Using near Infrared Chemical Imaging“. NIR news 19, Nr. 7 (November 2008): 11–15. http://dx.doi.org/10.1255/nirn.1097.
Der volle Inhalt der QuelleBagga, Mun Bhawni, C. Anand Kumar und Garima Yeluri. „Clinicoradiologic evaluation of styloid process calcification“. Imaging Science in Dentistry 42, Nr. 3 (2012): 155. http://dx.doi.org/10.5624/isd.2012.42.3.155.
Der volle Inhalt der QuellePetermann, Simon, Stefan Kniesburges, Anke Ziethe, Anne Schützenberger und Michael Döllinger. „Evaluation of Analytical Modeling Functions for the Phonation Onset Process“. Computational and Mathematical Methods in Medicine 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/8469139.
Der volle Inhalt der QuelleBarboriak, Daniel, Jon Steingrimsson, Constantine Gatsonis, David Schiff und Lawrence Kleinberg. „CLRM-07. INCREASING EFFICIENCY IN EARLY PHASE MULTICENTER IMAGING BIOMARKER TRIALS: EMERGING STRATEGIES FROM THE GABLE (GLIOBLASTOMA ACCELERATED BIOMARKER LEARNING ENVIRONMENT) TRIAL“. Neuro-Oncology Advances 3, Supplement_4 (21.09.2021): iv2. http://dx.doi.org/10.1093/noajnl/vdab112.006.
Der volle Inhalt der QuelleKIMMEY, M., D. BURNETT, F. ALKAWAS, D. CARRLOCKE, R. GANNAN, Z. SAEED, M. SCOBEY, T. STEIN, S. STEINBERG und A. DIMARINOJR. „Device evaluation and the food and drug administration process“. Gastrointestinal Endoscopy 43, Nr. 2 (1996): 641–44. http://dx.doi.org/10.1016/s0016-5107(96)81613-0.
Der volle Inhalt der QuelleJiang, Min, Zhen Yun Fang und Bing Quan Hu. „Parameters Evaluation of Neutron Pinhole Imaging System Based on Geant4“. Advanced Materials Research 396-398 (November 2011): 2349–52. http://dx.doi.org/10.4028/www.scientific.net/amr.396-398.2349.
Der volle Inhalt der QuelleKarr, Jeffrey C., James A. Black und Joshua M. Bernard. „Magnetic Resonance Imaging Evaluation of Monostotic Fibrous Dysplasia of the Tibia“. Journal of the American Podiatric Medical Association 91, Nr. 6 (01.06.2001): 306–10. http://dx.doi.org/10.7547/87507315-91-6-306.
Der volle Inhalt der QuelleDissertationen zum Thema "Imaging process evaluation"
Mantle, Emma Jane. „An evaluation of 3D building modelling and visualisation packages for enhancing public participation within the planning process“. Thesis, University of South Wales, 2007. https://pure.southwales.ac.uk/en/studentthesis/an-evaluation-of-3d-building-modelling-and-visualisation-packages-for-enhancing-public-participation-within-the-planning-process(9e7f4a54-2fde-4723-ada8-17412b5f9efe).html.
Der volle Inhalt der QuelleBainar, Petr. „Modelování rekonstrukce obrazu při CT RTG fluoroskopii“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-220045.
Der volle Inhalt der QuellePilgrim, Matthew John. „The application of visualisation techniques to the process of building performance analysis“. Thesis, Loughborough University, 2003. https://dspace.lboro.ac.uk/2134/797.
Der volle Inhalt der QuelleDolasinski, Brian David. „Nonlinear systems for frequency conversion from IR to RF“. University of Dayton / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1417804168.
Der volle Inhalt der QuelleMileze, Ana Maria Brandão. „Avaliação não supervisionada do processo de segmentação de imagens utilizadas em geociências“. Universidade do Estado do Rio de Janeiro, 2010. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=3465.
Der volle Inhalt der QuelleCom a necessidade de extrair as informações contidas nas imagens de satélite de forma rápida, eficiente e econômica, são utilizadas cada vez mais as técnicas computacionais de processamento de imagens como a de segmentação automática. Segmentar uma imagem consiste em dividí-la em regiões através de um critério de similaridade, onde os pixels que estão contidos nestas possuem características semelhantes, como por exemplo, nível de cinza, textura, ou seja, a que melhor represente os objetos presentes na imagem. Existem vários exemplos de algoritmos segmentadores, como o de crescimento de regiões onde os pixels crescem e são aglutinados formando regiões. Para determinar quais os melhores parâmetros utilizados nestes algoritmos segmentadores é necessário que se avalie os resultados a partir dos métodos mais utilizados, que são os supervisionados onde há necessidade de uma imagem de referência, considerada ideal fazendo com que se tenha um conhecimento a priori da região de estudo. Os não supervisionados, onde não há a necessidade de uma imagem de referência, fazendo com que o usuário economize tempo. Devido à dificuldade de se obter avaliadores para diferentes tipos de imagem, é proposta a metodologia que permite avaliar imagens que possuam áreas com vegetação, onde serão formadas grandes regiões (Crianass) e o que avaliará as imagens com áreas urbanas onde será necessário mais detalhamento (Cranassir).
With the need of extracting the information contained in satellite images in a quick, efficent and economic way computational image process tecniques are being used more frequently, such as the automatic segmentation. Segmenting an image consists on dividing it in regions acording to a similarity standard, where the pixels which are contained there have the same characteristic, for example, level of gray, texture, that is, the one that best represents the objects on the image. There are lots of examples of segmentary algorithm like the development of areas where the pixels 'grow" and are agglutinated forming regions. To determine which are the best parameters utilized in these segmentary algorithms it is necessary to evaluate the results from the methods used more often, they are the supervized where there is a need of a reference image, considered ideal, giving us a priori knowledge of the regions in study. The unsupervised, where there is not the need of a reference image, make the user save time. Due to the difficulty of obtaining evaluators, for different kinds of images, is proposed the methodology that allows to evaluate images that have vegetation areas, where it will be formed large regions (Crianass), and the one that will evaluate the images with urban areas, where it will be needed more detailing (Cranassir).
Fiala, Petr. „Modelování procesu projekčního a projekčně-rekonstrukčního rtg zobrazení“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2010. http://www.nusl.cz/ntk/nusl-218665.
Der volle Inhalt der QuelleNada, Vasić. „Primena jednodimenzionalnog i volumetrijskog merenja u evaluaciji terapijskog odgovora karcinoma pluća višeslojnom kompjuterizovanom tomografijom“. Phd thesis, Univerzitet u Novom Sadu, Medicinski fakultet u Novom Sadu, 2019. https://www.cris.uns.ac.rs/record.jsf?recordId=110621&source=NDLTD&language=en.
Der volle Inhalt der QuelleLung cancer is the leading cause of mortality among all malignancies, and despite advances in diagnostics and therapy over the past 30 years, there has been no significant improvement in the extremely low overall rate of a five-year survival with these patients. At the time of the diagnosis, more than a third of all newly discovered cases are at the IV stage of the disease. Precise and adequate monitoring of the response of the tumor to therapeutic treatment with lung cancer patients in IV stage, as well as the early detection of progression of the disease or inefficiency of therapy in this group of patients is of great importance as chemotherapy is the only therapeutic option for these patients. The existing conventional methods of one-dimensional measurement and assessment of tumor response to therapeutic treatment according to RECIST criteria do not use all the advantages of CT diagnostics and rely on the subjectivity of manual measurements. Advanced radiological techniques, such as volumetry, can contribute to the development of the image monitoring of the therapeutic response of tumors in patients with lung cancer. The aim of this study is to evaluate the application of one-dimensional and volumetric measurement in the assessment of the therapeutic response to lung cancer with multslice computerized tomography. Methodology: A study per type of prospective study included 100 patients with lung cancer at the IV stage of the disease at the time of detection, which were tested in the period between 2013 and 2016 at the Institute of Pulmonary Diseases of Vojvodina in Sremska Kamenica and met the criteria for entering the study. With all patients involved in the study, two radiologists independently assessed all CT chest exams, performed one-dimensional manual and volumetric measurements of selected target lesions, which enabled the determination of intraobserver and interobserver variability and the agreement of the target lesion measurement results using the test method. Based on the results of the performed measurements, the categorization of the therapeutic response of the tumor with conventional RECIST criteria, as well as the application of a modified categorization system for volumetric assessment of the therapeutic response with modified optimal limit values for classification (progression of the disease and positive response to the therapy) was performed, calculated on the basis of the tested sample. Comparison of manual and volumetric estimates of the therapeutic response was made using various classification systems with the determination of the degree of difference in classification and analysis of survival of patients until the progression of the disease. The influence of morphological characteristics of target lesions on the results of volumetric measurement was determined by the analysis of the deviation of the measured tumor volume relative to the arithmetic mean between the groups of lesions of the examined morphological characteristics. Results: The application of volumetric measurements on the test sample leads to a lower rate of variability in the results of measuring the dimensions of the target lesions compared to the conventional manual measurement method, and in the case of interobserver variability (0.9% versus 6.5%) and in terms of intraobserver variability (4.9% to 0.9%). The volumetric assessment of the therapeutic response of the tumor using modified boundary categorization values (3Dindividual model) results in a significantly different classification of the therapeutic response in relation to the use of conventional RECIST criteria. In the case of volumetric assessment of the therapeutic response, the classification of patients using the new “3D-individual” categorization system leads to a misclassification in 22.2% of cases compared to RECIST equivalent to volumetric criteria, reflecting the equally good predictability of PFS in these two systems. The results of the study showed that the appearance of the lesion margins and relation to the surrounding anatomical structures influenced the variability of the results of volumetric measurements. Conclusion: The application of volumetric measurements as a new aspect of the morphological evaluation of lung cancer response to applied therapies can help in making therapeutic decisions both in the treatment of individual patients and in the conduct of clinical trials.
Bücher zum Thema "Imaging process evaluation"
International Commission on Radiation Units and Measurements., Hrsg. Medical imaging--the assessment of image quality. Bethesda, Md: International Commission on Radiation Units and Measurements, 1995.
Den vollen Inhalt der Quelle findenCuocolo, Alberto, und Emilia Zampella. Role of Imaging in Diabetes Mellitus. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199392094.003.0018.
Der volle Inhalt der QuelleNarayana, Shalini, Babak Saboury, Andrew B. Newberg, Andrew C. Papanicolaou und Abass Alavi. Positron Emission Tomography. Herausgegeben von Andrew C. Papanicolaou. Oxford University Press, 2014. http://dx.doi.org/10.1093/oxfordhb/9780199764228.013.8.
Der volle Inhalt der QuelleStefanidis, Alexandros S., und Bogdan A. Popescu. Competence and certification. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198726012.003.0069.
Der volle Inhalt der QuelleBearcroft, Philip. Radiology. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199533909.003.0012.
Der volle Inhalt der QuelleSeeck, Margitta, L. Spinelli, Jean Gotman und Fernando H. Lopes da Silva. Combination of Brain Functional Imaging Techniques. Herausgegeben von Donald L. Schomer und Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0046.
Der volle Inhalt der QuelleGarcia, Ernest V. Use of Artificial Intelligence Including Decision Support Systems in Cardiac Imaging. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199392094.003.0030.
Der volle Inhalt der QuelleAlavi, Abass, und Andrew B. Newberg. Functional Neuroimaging: A Transformative Tool for Integrative Psychiatry. Herausgegeben von Anthony J. Bazzan und Daniel A. Monti. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190690557.003.0014.
Der volle Inhalt der QuelleBreast Cancer: Setting Priorities for Effectiveness Research. Natl Academy Pr, 1990.
Den vollen Inhalt der Quelle findenNahmias, Eddy. Your Brain as the Source of Free Will Worth Wanting. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190460723.003.0014.
Der volle Inhalt der QuelleBuchteile zum Thema "Imaging process evaluation"
Tilkemeier, Peter L. „The Complexity of the Non-invasive Cardiac Imaging Process“. In Quality Evaluation in Non-Invasive Cardiovascular Imaging, 29–36. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28011-0_4.
Der volle Inhalt der QuelleHalleck, Seymour L. „Additional Procedures and Tests in the Diagnostic Process, Laboratory Testing, Electroencephalogram, Imaging, and Psychological Testing“. In Evaluation of the Psychiatric Patient, 179–89. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5880-0_7.
Der volle Inhalt der QuelleHauenstein, Dale E., David J. Cimbalik und Peter G. Pape. „Evaluation of Process Aids for Controlling Surface Roughness of Extruded LLDPE“. In Imaging and Image Analysis Applications for Plastics, 97–105. Elsevier, 1999. http://dx.doi.org/10.1016/b978-188420781-5.50014-0.
Der volle Inhalt der QuelleBednarikova, Maria. „Critical Thinking as a Multifaceted Phenomenon“. In Medical Imaging, 1618–50. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0571-6.ch068.
Der volle Inhalt der QuellePrice, Susanna, und Alessia Gambaro. „Echocardiography evaluation in extracorporeal support“. In The ESC Textbook of Cardiovascular Imaging, herausgegeben von José Luis Zamorano, Jeroen J. Bax, Juhani Knuuti, Patrizio Lancellotti, Fausto J. Pinto, Bogdan A. Popescu und Udo Sechtem, 599–612. Oxford University Press, 2021. http://dx.doi.org/10.1093/med/9780198849353.003.0041.
Der volle Inhalt der QuelleDrazkowski, Joseph F. „Epilepsy Surgery Evaluation“. In Clinical Neurophysiology, 196–208. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190259631.003.0013.
Der volle Inhalt der QuelleWymer, David C., und David T. G. Wymer. „Imaging of the Kidney“. In Kidney Protection, herausgegeben von Vijay Lapsia, Bernard G. Jaar und A. Ahsan Ejaz, 71–80. Oxford University Press, 2019. http://dx.doi.org/10.1093/med/9780190611620.003.0008.
Der volle Inhalt der QuelleZwettler, Gerald Adam, und Werner Backfrieder. „Evaluations on the Applicability of Generic and Modular Image Processing Chains for Quantitative 3D Data Analysis in Clinical Research and Radiographer Training“. In Medical Imaging, 1480–500. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0571-6.ch063.
Der volle Inhalt der QuelleTurakhia, Aalok, Brent P. Little und Travis S. Henry. „Tracheal Narrowing and Tracheomalacia“. In Chest Imaging, 313–18. Oxford University Press, 2019. http://dx.doi.org/10.1093/med/9780199858064.003.0054.
Der volle Inhalt der QuelleShikhare, Sumer N., und Wilfred C. G. Peh. „Soft Tissue Infections“. In Musculoskeletal Imaging Volume 2, herausgegeben von Mihra S. Taljanovic und Tyson S. Chadaz, 102–8. Oxford University Press, 2019. http://dx.doi.org/10.1093/med/9780190938178.003.0088.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Imaging process evaluation"
Leisti, Tuomas, Raisa Halonen, Anna Kokkonen, Hanna Weckman, Marja Mettänen, Lasse Lensu, Risto Ritala, Pirkko Oittinen und Göte Nyman. „Process perspective on image quality evaluation“. In Electronic Imaging 2008, herausgegeben von Susan P. Farnand und Frans Gaykema. SPIE, 2008. http://dx.doi.org/10.1117/12.765438.
Der volle Inhalt der QuelleFortin, Jean, Paul C. Chevrette und Robert Plante. „Evaluation of the microscanning process“. In SPIE's 1994 International Symposium on Optics, Imaging, and Instrumentation, herausgegeben von Bjorn F. Andresen. SPIE, 1994. http://dx.doi.org/10.1117/12.188643.
Der volle Inhalt der QuelleMcDowell, David Q., und Lawrence C. Steele. „CGATS data evaluation protocol for printing process characterization“. In Photonics West '98 Electronic Imaging, herausgegeben von Giordano B. Beretta und Reiner Eschbach. SPIE, 1998. http://dx.doi.org/10.1117/12.298290.
Der volle Inhalt der QuellePohle, Regina, und Klaus D. Toennies. „Three-level evaluation process for segmentation methods in medical imaging“. In Medical Imaging 2002, herausgegeben von Milan Sonka und J. Michael Fitzpatrick. SPIE, 2002. http://dx.doi.org/10.1117/12.467169.
Der volle Inhalt der QuelleTischenko, Oleg, Yuan Xu und Christoph Hoeschen. „Improvement of the OPED algorithm by means of introducing an integration into the evaluation process“. In Medical Imaging, herausgegeben von Jiang Hsieh und Michael J. Flynn. SPIE, 2007. http://dx.doi.org/10.1117/12.711421.
Der volle Inhalt der QuelleSoleimanzad, Haleh, Marjorie Juchaux, Hirac Gurden, Delphine Crepin und Frédéric Pain. „Evaluation of skull optical clearing process for longitudinal non invasive optical imaging“. In Neural Imaging and Sensing 2020, herausgegeben von Qingming Luo, Jun Ding und Ling Fu. SPIE, 2020. http://dx.doi.org/10.1117/12.2544298.
Der volle Inhalt der QuelleLee, Shuo-Jen, Jing-Jang Lai und Dar-Yuan Chang. „Surface faults evaluation by optical imaging method for electropolishing process“. In Third International Symposium on Precision Mechanical Measurements. SPIE, 2006. http://dx.doi.org/10.1117/12.716328.
Der volle Inhalt der QuelleCabrera Fernandez, Delia, und Harry M. Salinas. „Evaluation of a nonlinear diffusion process for segmentation and quantification of lesions in optical coherence tomography images“. In Medical Imaging, herausgegeben von J. Michael Fitzpatrick und Joseph M. Reinhardt. SPIE, 2005. http://dx.doi.org/10.1117/12.596024.
Der volle Inhalt der QuelleMo, Defeng, Jiarong Wu, Mengdie Jiang, Jinglin Zhang, Lin Xu und Zhenli Zhao. „Progress in ultrasonic bonding wire process and quality evaluation of bonding point“. In Optical Sensing and Imaging Technology and Applications, herausgegeben von Yadong Jiang, Haimei Gong, Weibiao Chen und Jin Li. SPIE, 2017. http://dx.doi.org/10.1117/12.2285650.
Der volle Inhalt der QuelleKroll, Julia, Sabine Botta, Jannis Breuninger und Alexander Verl. „Adaptive quality assurance of the product development process of additive manufacturing with modern 3D data evaluation methods“. In IS&T/SPIE Electronic Imaging, herausgegeben von Atilla M. Baskurt und Robert Sitnik. SPIE, 2013. http://dx.doi.org/10.1117/12.2005203.
Der volle Inhalt der Quelle