Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Injectable in-situ forming hydrogel.

Zeitschriftenartikel zum Thema „Injectable in-situ forming hydrogel“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Injectable in-situ forming hydrogel" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Chen, Ying, Xiaomin Wang, Yudong Huang, et al. "In Situ-Forming Cellulose/Albumin-Based Injectable Hydrogels for Localized Antitumor Therapy." Polymers 13, no. 23 (2021): 4221. http://dx.doi.org/10.3390/polym13234221.

Der volle Inhalt der Quelle
Annotation:
Injectable hydrogels, which are formed in situ by changing the external stimuli, have the unique characteristics of easy handling and minimal invasiveness, thus providing the advantage of bypass surgical operation and improving patient compliance. Using external temperature stimuli to realize the sol-to-gel transition when preparing injectable hydrogel is essential since the temperature is stable in vivo and controllable during ex vivo, although the hydrogels obtained possibly have low mechanical strength and stability. In this work, we designed an in situ fast-forming injectable cellulose/alb
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ho, Emily, Anthony Lowman, and Michele Marcolongo. "In situ apatite forming injectable hydrogel." Journal of Biomedical Materials Research Part A 83A, no. 1 (2007): 249–56. http://dx.doi.org/10.1002/jbm.a.31457.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wang, Lixuan, Shiyan Dong, Yutong Liu, et al. "Fabrication of Injectable, Porous Hyaluronic Acid Hydrogel Based on an In-Situ Bubble-Forming Hydrogel Entrapment Process." Polymers 12, no. 5 (2020): 1138. http://dx.doi.org/10.3390/polym12051138.

Der volle Inhalt der Quelle
Annotation:
Injectable hydrogels have been widely applied in the field of regenerative medicine. However, current techniques for injectable hydrogels are facing a challenge when trying to generate a biomimetic, porous architecture that is well-acknowledged to facilitate cell behaviors. In this study, an injectable, interconnected, porous hyaluronic acid (HA) hydrogel based on an in-situ bubble self-generation and entrapment process was developed. Through an amide reaction between HA and cystamine dihydrochloride activated by EDC/NHS, CO2 bubbles were generated and were subsequently entrapped inside the su
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Mashaqbeh, Hadeia, Batool Al-Ghzawi, and Fatima BaniAmer. "Exploring the Formulation and Approaches of Injectable Hydrogels Utilizing Hyaluronic Acid in Biomedical Uses." Advances in Pharmacological and Pharmaceutical Sciences 2024 (May 27, 2024): 1–19. http://dx.doi.org/10.1155/2024/3869387.

Der volle Inhalt der Quelle
Annotation:
The characteristics of injectable hydrogels make them a prime contender for various biomedical applications. Hyaluronic acid is an essential component of the matrix surrounding the cells; moreover, hyaluronic acid’s structural and biochemical characteristics entice researchers to develop injectable hydrogels for various applications. However, due to its poor mechanical properties, several strategies are used to produce injectable hyaluronic acid hydrogel. This review summarizes published studies on the production of injectable hydrogels based on hyaluronic acid polysaccharide polymers and the
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kwon, Jin Seon, So Mi Yoon, Doo Yeon Kwon, et al. "Injectable in situ-forming hydrogel for cartilage tissue engineering." Journal of Materials Chemistry B 1, no. 26 (2013): 3314. http://dx.doi.org/10.1039/c3tb20105h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kocak, Fatma Z., Abdullah C. S. Talari, Muhammad Yar, and Ihtesham U. Rehman. "In-Situ Forming pH and Thermosensitive Injectable Hydrogels to Stimulate Angiogenesis: Potential Candidates for Fast Bone Regeneration Applications." International Journal of Molecular Sciences 21, no. 5 (2020): 1633. http://dx.doi.org/10.3390/ijms21051633.

Der volle Inhalt der Quelle
Annotation:
Biomaterials that promote angiogenesis are required for repair and regeneration of bone. In-situ formed injectable hydrogels functionalised with bioactive agents, facilitating angiogenesis have high demand for bone regeneration. In this study, pH and thermosensitive hydrogels based on chitosan (CS) and hydroxyapatite (HA) composite materials loaded with heparin (Hep) were investigated for their pro-angiogenic potential. Hydrogel formulations with varying Hep concentrations were prepared by sol–gel technique for these homogeneous solutions were neutralised with sodium bicarbonate (NaHCO3) at 4
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Turabee, Md Hasan, Thavasyappan Thambi, Huu Thuy Trang Duong, Ji Hoon Jeong, and Doo Sung Lee. "A pH- and temperature-responsive bioresorbable injectable hydrogel based on polypeptide block copolymers for the sustained delivery of proteins in vivo." Biomaterials Science 6, no. 3 (2018): 661–71. http://dx.doi.org/10.1039/c7bm00980a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kim, Da Yeon, Hyeon Jin Ju, Jae Ho Kim, Sangdun Choi, and Moon Suk Kim. "Injectable in situ forming hydrogel gene depot to improve the therapeutic effect of STAT3 shRNA." Biomaterials Science 9, no. 12 (2021): 4459–72. http://dx.doi.org/10.1039/d1bm00624j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

King, Jasmine L., Alain Valdivia, Shawn D. Hingtgen, and S. Rahima Benhabbour. "Injectable Tumoricidal Neural Stem Cell-Laden Hydrogel for Treatment of Glioblastoma Multiforme—An In Vivo Safety, Persistence, and Efficacy Study." Pharmaceutics 17, no. 1 (2024): 3. https://doi.org/10.3390/pharmaceutics17010003.

Der volle Inhalt der Quelle
Annotation:
Background/Objectives: Glioblastoma multiforme (GBM) is the most common high-grade primary brain cancer in adults. Despite efforts to advance treatment, GBM remains treatment resistant and inevitably progresses after first-line therapy. Induced neural stem cell (iNSC) therapy is a promising, personalized cell therapy approach that has been explored to circumvent challenges associated with the current GBM treatment. Methods: Herein, we developed a chitosan-based (CS) injectable, biodegradable, in situ forming thermo-responsive hydrogel as a cell delivery vehicle for the treatment of GBM. Tumori
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zhang, Yajie, Hong Chen, Tingting Zhang, et al. "Fast-forming BMSC-encapsulating hydrogels through bioorthogonal reaction for osteogenic differentiation." Biomaterials Science 6, no. 10 (2018): 2578–81. http://dx.doi.org/10.1039/c8bm00689j.

Der volle Inhalt der Quelle
Annotation:
An injectable in situ fast-forming hydrogel was fabricated to encapsulate BMSCs for osteogenic differentiation through the inverse electron demand Diels–Alder click reaction between trans-cyclooctene-modified PEG and tetrazine-modified hyaluronic acid.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Begum, Bushra, Trideva Sastri Koduru, Syeda Noor Madni, et al. "Dual-Self-Crosslinking Effect of Alginate-Di-Aldehyde with Natural and Synthetic Co-Polymers as Injectable In Situ-Forming Biodegradable Hydrogel." Gels 10, no. 10 (2024): 649. http://dx.doi.org/10.3390/gels10100649.

Der volle Inhalt der Quelle
Annotation:
Injectable, in situ-forming hydrogels, both biocompatible and biodegradable, have garnered significant attention in tissue engineering due to their potential for creating adaptable scaffolds. The adaptability of these hydrogels, made from natural proteins and polysaccharides, opens up a world of possibilities. In this study, sodium alginate was used to synthesize alginate di-aldehyde (ADA) through periodate oxidation, resulting in a lower molecular weight and reduced viscosity, with different degrees of oxidation (54% and 70%). The dual-crosslinking mechanism produced an injectable in situ hyd
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Tavakol, Moslem, Ebrahim Vasheghani-Farahani, Mohammad Amin Mohammadifar, and Maryam Dehghan-Niri. "Effect of gamma irradiation on the physicochemical and rheological properties of enzyme-catalyzed tragacanth-based injectable hydrogels." Journal of Polymer Engineering 39, no. 5 (2019): 442–49. http://dx.doi.org/10.1515/polyeng-2018-0366.

Der volle Inhalt der Quelle
Annotation:
Abstract In the present study, gamma irradiation was applied to promote the mechanical properties of enzyme- mediated in situ forming hydrogels prepared with tyramine-functionalized gum tragacanth (TA-GT). For this purpose, after gamma irradiation of powder or hydrocolloid solution of gum tragacanth (GT), the physiochemical and rheological properties of GT solution, and resultant hydrogel was investigated. In situ forming hydrogels were prepared via horseradish peroxidase catalyzed coupling reaction of TA-GT in the presence of hydrogen peroxide. Gamma irradiation led to a decrease in GT molecu
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Korytkowska-Walach, Anna, Monika Smiga-Matuszowicz, and Jan Lukaszczyk. "Polymeric in situ forming systems for biomedical applications. Part II. Injectable hydrogel systems." Polimery 60, no. 07/08 (2015): 435–47. http://dx.doi.org/10.14314/polimery.2015.435.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

K., C. Anaswaraashok* R. S. Anusree Dr. Jisha mohanan. "Injectable In-Situ Forming Hydrogels: A Versatile Depot Platform for Localized and Postoperative Cancer Therapy." International Journal of Pharmaceutical Sciences 3, no. 5 (2025): 1785–803. https://doi.org/10.5281/zenodo.15383345.

Der volle Inhalt der Quelle
Annotation:
Cancer remains one of the most critical global health challenges, contributing to millions of deaths each year despite advancements in diagnostic and therapeutic strategies. Conventional treatment modalities such as chemotherapy and radiotherapy often lead to significant systemic toxicity, poor bioavailability, and nonspecific drug distribution, limiting their therapeutic efficiency. To overcome these limitations, injectable in-situ forming hydrogel depots have emerged as innovative and promising localized drug delivery platforms. These hydrophilic, three-dimensional polymeric networks can tra
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Li, Fei, Jinlin He, Mingzu Zhang та Peihong Ni. "A pH-sensitive and biodegradable supramolecular hydrogel constructed from a PEGylated polyphosphoester-doxorubicin prodrug and α-cyclodextrin". Polymer Chemistry 6, № 28 (2015): 5009–14. http://dx.doi.org/10.1039/c5py00620a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Flegeau, Killian, Olivier Gauthier, Gildas Rethore, et al. "Injectable silanized hyaluronic acid hydrogel/biphasic calcium phosphate granule composites with improved handling and biodegradability promote bone regeneration in rabbits." Biomaterials Science 9, no. 16 (2021): 5640–51. http://dx.doi.org/10.1039/d1bm00403d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Brijesh, Kumar, K. Singh Amit, K. Prasad Raj, S. Singh Chandra, and Dwivedi Vivek. "Formulation and Evaluation of an Injectable In-Situ Forming Hydrogel of Dacarbazine as Anticancer Agent." Pharmaceutical and Chemical Journal 3, no. 1 (2016): 100–108. https://doi.org/10.5281/zenodo.13739933.

Der volle Inhalt der Quelle
Annotation:
Cancer is currently one of the leading causes of death worldwide. Anticancer drugs can be given either by the conventional drug delivery systems including solid dosage forms, Injectable dosage forms and infusions or using the Novel drug delivery systems including targeted drug delivery dosage forms such as liposomes and nanoparticles etc.The objective of present investigation is to formulate and evaluate the <em>In situ</em> forming mainly Temperature induced and pH induced gelling Injectable hydrogels of an anticancer drug Dacarbazine using delivery vehicle Chitosan.All selected temperature i
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Goder Orbach, Daniella, Ilana Roitman, Geffen Coster Kimhi, and Meital Zilberman. "Formulation-Property Effects in Novel Injectable and Resilient Natural Polymer-Based Hydrogels for Soft Tissue Regeneration." Polymers 16, no. 20 (2024): 2879. http://dx.doi.org/10.3390/polym16202879.

Der volle Inhalt der Quelle
Annotation:
The development of injectable hydrogels for soft tissue regeneration has gained significant attention due to their minimally invasive application and ability to conform precisely to the shape of irregular tissue cavities. This study presents a novel injectable porous scaffold based on natural polymers that undergoes in situ crosslinking, forming a highly resilient hydrogel with tailorable mechanical and physical properties to meet the specific demands of soft tissue repair. By adjusting the formulation, we achieved a range of stiffness values that closely mimic the mechanical characteristics o
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Kim, Hea Kyung, Woo Sun Shim, Sung Eun Kim, et al. "Injectable In Situ–Forming pH/Thermo-Sensitive Hydrogel for Bone Tissue Engineering." Tissue Engineering Part A 15, no. 4 (2009): 923–33. http://dx.doi.org/10.1089/ten.tea.2007.0407.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Yang, Jeong-A., Junseok Yeom, Byung Woo Hwang, Allan S. Hoffman, and Sei Kwang Hahn. "In situ-forming injectable hydrogels for regenerative medicine." Progress in Polymer Science 39, no. 12 (2014): 1973–86. http://dx.doi.org/10.1016/j.progpolymsci.2014.07.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Young, Stuart A., Hossein Riahinezhad, and Brian G. Amsden. "In situ-forming, mechanically resilient hydrogels for cell delivery." Journal of Materials Chemistry B 7, no. 38 (2019): 5742–61. http://dx.doi.org/10.1039/c9tb01398a.

Der volle Inhalt der Quelle
Annotation:
Injectable, in situ-forming hydrogels can improve cell delivery in tissue engineering applications by facilitating minimally invasive delivery to irregular defect sites and improving cell retention and survival.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Yan, Shifeng, Xin Zhang, Kunxi Zhang, et al. "Injectable in situ forming poly(l-glutamic acid) hydrogels for cartilage tissue engineering." Journal of Materials Chemistry B 4, no. 5 (2016): 947–61. http://dx.doi.org/10.1039/c5tb01488c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Phan, V. H. Giang, Mohanapriya Murugesan, Panchanathan Manivasagan, et al. "Injectable Hydrogel Based on Protein-Polyester Microporous Network as an Implantable Niche for Active Cell Recruitment." Pharmaceutics 14, no. 4 (2022): 709. http://dx.doi.org/10.3390/pharmaceutics14040709.

Der volle Inhalt der Quelle
Annotation:
Despite the potential of hydrogel-based localized cancer therapies, their efficacy can be limited by cancer recurrence. Therefore, it is of great significance to develop a hydrogel system that can provoke robust and durable immune response in the human body. This study has developed an injectable protein-polymer-based porous hydrogel network composed of lysozyme and poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide (PCLA) (Lys-PCLA) bioconjugate for the active recruitment dendritic cells (DCs). The Lys-PCLA bioconjugates are prepared using thiol-ene react
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Andrgie, Abegaz Tizazu, Haile Fentahun Darge, Tefera Worku Mekonnen, et al. "Ibuprofen-Loaded Heparin Modified Thermosensitive Hydrogel for Inhibiting Excessive Inflammation and Promoting Wound Healing." Polymers 12, no. 11 (2020): 2619. http://dx.doi.org/10.3390/polym12112619.

Der volle Inhalt der Quelle
Annotation:
Hydrogels have been investigated as ideal biomaterials for wound treatment owing to their ability to form a highly moist environment which accelerates cell migration and tissue regeneration for prompt wound healing. They can also be used as a drug carrier for local delivery, and are able to activate immune cells to enhance wound healing. Here, we developed heparin-conjugated poly(N-isopropylacrylamide), an injectable, in situ gel-forming polymer, and evaluated its use in wound healing. Ibuprofen was encapsulated into the hydrogel to help reduce pain and excessive inflammation during healing. I
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Abdelghafour, Mohamed M., Ágota Deák, Tamás Kiss, et al. "Self-Assembling Injectable Hydrogel for Controlled Drug Delivery of Antimuscular Atrophy Drug Tilorone." Pharmaceutics 14, no. 12 (2022): 2723. http://dx.doi.org/10.3390/pharmaceutics14122723.

Der volle Inhalt der Quelle
Annotation:
A two-component injectable hydrogel was suitably prepared for the encapsulation and prolonged release of tilorone which is an antimuscular atrophy drug. The rapid (7–45 s, depending on the polymer concentration) in situ solidifications of the hydrogel were evoked by the evolving Schiff-base bonds between the aldehyde groups of modified PVA (4-formyl benzoate PVA, PVA-CHO, 5.9 mol% functionalization degree) and the amino groups of 3-mercaptopropionate chitosan (CHIT-SH). The successful modification of the initial polymers was confirmed by both FTIR and NMR measurements; moreover, a new peak app
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Amirthalingam, Sivashanmugam, Ashvin Ramesh, Seunghun S. Lee, Nathaniel S. Hwang, and Rangasamy Jayakumar. "Injectable in Situ Shape-Forming Osteogenic Nanocomposite Hydrogel for Regenerating Irregular Bone Defects." ACS Applied Bio Materials 1, no. 4 (2018): 1037–46. http://dx.doi.org/10.1021/acsabm.8b00225.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Liu, Hui, Jia Liu, Chao Qi, et al. "Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture." Acta Biomaterialia 35 (April 2016): 228–37. http://dx.doi.org/10.1016/j.actbio.2016.02.028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Shin, Gi Ru, Hee Eun Kim, Jae Ho Kim, Sangdun Choi, and Moon Suk Kim. "Advances in Injectable In Situ-Forming Hydrogels for Intratumoral Treatment." Pharmaceutics 13, no. 11 (2021): 1953. http://dx.doi.org/10.3390/pharmaceutics13111953.

Der volle Inhalt der Quelle
Annotation:
Chemotherapy has been linked to a variety of severe side effects, and the bioavailability of current chemotherapeutic agents is generally low, which decreases their effectiveness. Therefore, there is an ongoing effort to develop drug delivery systems to increase the bioavailability of these agents and minimize their side effects. Among these, intratumoral injections using in situ-forming hydrogels can improve drugs’ bioavailability and minimize drugs’ accumulation in non-target organs or tissues. This review describes different types of injectable in situ-forming hydrogels and their intratumor
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Kocak, Fatma Z., Muhammad Yar, and Ihtesham U. Rehman. "Hydroxyapatite-Integrated, Heparin- and Glycerol-Functionalized Chitosan-Based Injectable Hydrogels with Improved Mechanical and Proangiogenic Performance." International Journal of Molecular Sciences 23, no. 10 (2022): 5370. http://dx.doi.org/10.3390/ijms23105370.

Der volle Inhalt der Quelle
Annotation:
The investigation of natural bioactive injectable composites to induce angiogenesis during bone regeneration has been a part of recent minimally invasive regenerative medicine strategies. Our previous study involved the development of in situ-forming injectable composite hydrogels (Chitosan/Hydroxyapatite/Heparin) for bone regeneration. These hydrogels offered facile rheology, injectability, and gelation at 37 °C, as well as promising pro-angiogenic abilities. In the current study, these hydrogels were modified using glycerol as an additive and a pre-sterile production strategy to enhance thei
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Ma, Zhenzhen, Cheng Tao, Lin Sun, et al. "In Situ Forming Injectable Hydrogel For Encapsulation Of Nanoiguratimod And Sustained Release Of Therapeutics." International Journal of Nanomedicine Volume 14 (November 2019): 8725–38. http://dx.doi.org/10.2147/ijn.s214507.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Ding, Xiaoya, Ye Wang, Jiaying Liu, et al. "Injectable In Situ Forming Double-Network Hydrogel To Enhance Transplanted Cell Viability and Retention." Chemistry of Materials 33, no. 15 (2021): 5885–95. http://dx.doi.org/10.1021/acs.chemmater.1c00635.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Kim, Da, Yoon Kim, Hai Lee, Shin Moon, Seung-Yup Ku, and Moon Kim. "In Vivo Osteogenic Differentiation of Human Embryoid Bodies in an Injectable in Situ-Forming Hydrogel." Materials 6, no. 7 (2013): 2978–88. http://dx.doi.org/10.3390/ma6072978.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Li, Fei, Jinlin He, Mingzu Zhang, Kam Chiu Tam та Peihong Ni. "Injectable supramolecular hydrogels fabricated from PEGylated doxorubicin prodrug and α-cyclodextrin for pH-triggered drug delivery". RSC Advances 5, № 67 (2015): 54658–66. http://dx.doi.org/10.1039/c5ra06156c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Mohammadi, Marzieh, Malihe Karimi, Bizhan Malaekeh-Nikouei, Mohammad Torkashvand, and Mona Alibolandi. "Hybrid in situ- forming injectable hydrogels for local cancer therapy." International Journal of Pharmaceutics 616 (March 2022): 121534. http://dx.doi.org/10.1016/j.ijpharm.2022.121534.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Songkroh, Titima, Hongguo Xie, Weiting Yu, et al. "Injectable in situ forming chitosan-based hydrogels for curcumin delivery." Macromolecular Research 23, no. 1 (2015): 53–59. http://dx.doi.org/10.1007/s13233-015-3006-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Chouhan, Dimple, Tshewuzo-u. Lohe, Pavan Kumar Samudrala, and Biman B. Mandal. "In Situ Forming Injectable Silk Fibroin Hydrogel Promotes Skin Regeneration in Full Thickness Burn Wounds." Advanced Healthcare Materials 7, no. 24 (2018): 1801092. http://dx.doi.org/10.1002/adhm.201801092.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Nguyen, Hy D., Munsik Jang, Hai V. Ngo, et al. "Physicochemical Properties, Drug Release and In Situ Depot-Forming Behaviors of Alginate Hydrogel Containing Poorly Water-Soluble Aripiprazole." Gels 10, no. 12 (2024): 781. https://doi.org/10.3390/gels10120781.

Der volle Inhalt der Quelle
Annotation:
The objective of this study was to investigate the physicochemical properties, drug release and in situ depot-forming behavior of alginate hydrogel containing poorly water-soluble aripiprazole (ARP) for achieving free-flowing injectability, clinically accessible gelation time and sustained drug release. The balanced ratio of pyridoxal phosphate (PLP) and glucono-delta-lactone (GDL) was crucial to modulate gelation time of the alginate solution in the presence of calcium carbonate. Our results demonstrated that the sol state alginate hydrogel before gelation was free-flowing, stable and readily
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Naderi-Meshkin, Hojjat, Kristin Andreas, Maryam M. Matin, et al. "Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering." Cell Biology International 38, no. 1 (2013): 72–84. http://dx.doi.org/10.1002/cbin.10181.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Dutta, Kingshuk, Ritam Das, Jing Ling, et al. "In Situ Forming Injectable Thermoresponsive Hydrogels for Controlled Delivery of Biomacromolecules." ACS Omega 5, no. 28 (2020): 17531–42. http://dx.doi.org/10.1021/acsomega.0c02009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Tran, Ngoc Quyen, Yoon Ki Joung, Eugene Lih, Kyung Min Park, and Ki Dong Park. "RGD-conjugated In Situ forming hydrogels as cell-adhesive injectable scaffolds." Macromolecular Research 19, no. 3 (2011): 300–306. http://dx.doi.org/10.1007/s13233-011-0309-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Dimatteo, Robert, Nicole J. Darling, and Tatiana Segura. "In situ forming injectable hydrogels for drug delivery and wound repair." Advanced Drug Delivery Reviews 127 (March 2018): 167–84. http://dx.doi.org/10.1016/j.addr.2018.03.007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Fiorica, Calogero, Fabio Salvatore Palumbo, Giovanna Pitarresi, Alessandro Gulino, Stefano Agnello, and Gaetano Giammona. "Injectable in situ forming hydrogels based on natural and synthetic polymers for potential application in cartilage repair." RSC Advances 5, no. 25 (2015): 19715–23. http://dx.doi.org/10.1039/c4ra16411c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Dehghan-Baniani, Dorsa, Yin Chen, Dong Wang, Reza Bagheri, Atefeh Solouk, and Hongkai Wu. "Injectable in situ forming kartogenin-loaded chitosan hydrogel with tunable rheological properties for cartilage tissue engineering." Colloids and Surfaces B: Biointerfaces 192 (August 2020): 111059. http://dx.doi.org/10.1016/j.colsurfb.2020.111059.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Kwon, Jin Seon, Sung Won Kim, Doo Yeon Kwon, et al. "In vivo osteogenic differentiation of human turbinate mesenchymal stem cells in an injectable in situ-forming hydrogel." Biomaterials 35, no. 20 (2014): 5337–46. http://dx.doi.org/10.1016/j.biomaterials.2014.03.045.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Lee, Yunki, Jin Woo Bae, Jin Woo Lee, Wonhee Suh, and Ki Dong Park. "Enzyme-catalyzed in situ forming gelatin hydrogels as bioactive wound dressings: effects of fibroblast delivery on wound healing efficacy." J. Mater. Chem. B 2, no. 44 (2014): 7712–18. http://dx.doi.org/10.1039/c4tb01111b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Marques, Ana Camila, Paulo C. Costa, Sérgia Velho, and Maria Helena Amaral. "Rheological and Injectability Evaluation of Sterilized Poloxamer-407-Based Hydrogels Containing Docetaxel-Loaded Lipid Nanoparticles." Gels 10, no. 5 (2024): 307. http://dx.doi.org/10.3390/gels10050307.

Der volle Inhalt der Quelle
Annotation:
Nanostructured lipid carriers (NLCs) have the potential to increase the bioavailability and reduce the side effects of docetaxel (DTX). However, only a small fraction of nanoparticles given intravenously can reach a solid tumor. In situ-forming gels combined with nanoparticles facilitate local administration and promote drug retention at the tumor site. Injectable hydrogels based on poloxamer 407 are excellent candidates for this hybrid nanoparticle–hydrogel system because of their thermoresponsive behavior and biocompatibility. Therefore, this work aimed to develop injectable poloxamer hydrog
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

He, Jinlin, Mingzu Zhang, and Peihong Ni. "Rapidly in situ forming polyphosphoester-based hydrogels for injectable drug delivery carriers." Soft Matter 8, no. 22 (2012): 6033. http://dx.doi.org/10.1039/c2sm25274k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Yan, Shifeng, Taotao Wang, Xing Li, et al. "Fabrication of injectable hydrogels based on poly(l-glutamic acid) and chitosan." RSC Advances 7, no. 28 (2017): 17005–19. http://dx.doi.org/10.1039/c7ra01864a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Zhang, Yu, Yi Sun, Xia Yang, Jöns Hilborn, Arend Heerschap, and Dmitri A. Ossipov. "Injectable In Situ Forming Hybrid Iron Oxide-Hyaluronic Acid Hydrogel for Magnetic Resonance Imaging and Drug Delivery." Macromolecular Bioscience 14, no. 9 (2014): 1249–59. http://dx.doi.org/10.1002/mabi.201400117.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Khan, Samiullah, Muhammad Usman Minhas, Muhammad Tahir Aqeel, et al. "RETRACTED: Khan et al. Poly (N-vinylcaprolactam-grafted-sodium alginate) Based Injectable pH/Thermo Responsive In Situ Forming Depot Hydrogels for Prolonged Controlled Anticancer Drug Delivery; In Vitro, In Vivo Characterization and Toxicity Evaluation. Pharmaceutics 2022, 14, 1050." Pharmaceutics 16, no. 1 (2024): 149. http://dx.doi.org/10.3390/pharmaceutics16010149.

Der volle Inhalt der Quelle
Annotation:
The journal retracts the article, “Poly (N-vinylcaprolactam-grafted-sodium alginate) Based Injectable pH/Thermo Responsive In Situ Forming Depot Hy-drogels for Prolonged Controlled Anticancer Drug Delivery; In Vitro, In Vivo Characterization and Toxicity Evaluation” [...]
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!