Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Intelligent recommendation system“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Intelligent recommendation system" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Intelligent recommendation system"
Kathait, ShailendraSingh, Shubhrita Tiwari und PiyushKumar Singh. „INTELLIGENT RECOMMENDATION SYSTEM.“ International Journal of Advanced Research 5, Nr. 2 (28.02.2017): 1649–56. http://dx.doi.org/10.21474/ijar01/3328.
Der volle Inhalt der QuelleMishra, Ikshita, Ankita Sharma und Tanuj Deria. „Intelligent Tourist Recommendation System“. IJARCCE 6, Nr. 4 (30.04.2017): 384–91. http://dx.doi.org/10.17148/ijarcce.2017.6474.
Der volle Inhalt der QuelleRtili, Mohammed Kamal, Ali Dahmani und Mohamed Khaldi. „Recommendation System Based on the Learners' Tracks in an Intelligent Tutoring System“. Journal of Advances in Computer Networks 2, Nr. 1 (2014): 40–43. http://dx.doi.org/10.7763/jacn.2014.v2.79.
Der volle Inhalt der QuelleNaik, Pratiksha Ashok. „Intelligent Food Recommendation System Using Machine Learning“. Volume 5 - 2020, Issue 8 - August 5, Nr. 8 (27.08.2020): 616–19. http://dx.doi.org/10.38124/ijisrt20aug414.
Der volle Inhalt der QuelleHirolikar, D. S., Ajinkya Satuse, Omkar Bhalerao, Pavan Pawar und Hrithik Thorat. „Intelligent Movie Recommendation System Using AI and ML“. International Journal for Research in Applied Science and Engineering Technology 10, Nr. 5 (31.05.2022): 611–22. http://dx.doi.org/10.22214/ijraset.2022.42255.
Der volle Inhalt der QuelleYang, Fan. „A hybrid recommendation algorithm–based intelligent business recommendation system“. Journal of Discrete Mathematical Sciences and Cryptography 21, Nr. 6 (18.08.2018): 1317–22. http://dx.doi.org/10.1080/09720529.2018.1526408.
Der volle Inhalt der Quelle., Jay Borade. „INTELLIGENT AGENT FOR TOURISM RECOMMENDATION SYSTEM“. International Journal of Research in Engineering and Technology 07, Nr. 04 (25.04.2018): 39–46. http://dx.doi.org/10.15623/ijret.2018.0704007.
Der volle Inhalt der QuelleCui, Xiaoyue. „An Adaptive Recommendation Algorithm of Intelligent Clothing Design Elements Based on Large Database“. Mobile Information Systems 2022 (06.06.2022): 1–10. http://dx.doi.org/10.1155/2022/3334047.
Der volle Inhalt der QuelleMao, Qingqing, Aihua Dong, Qingying Miao und Lu Pan. „Intelligent Costume Recommendation System Based on Expert System“. Journal of Shanghai Jiaotong University (Science) 23, Nr. 2 (April 2018): 227–34. http://dx.doi.org/10.1007/s12204-018-1933-x.
Der volle Inhalt der QuelleChen, Qing Zhang, Yu Jie Pei, Yan Jin und Li Yan Zhang. „Research on Intelligent Recommendation Method and its Application on Internet Bookstore“. Advanced Materials Research 121-122 (Juni 2010): 447–52. http://dx.doi.org/10.4028/www.scientific.net/amr.121-122.447.
Der volle Inhalt der QuelleDissertationen zum Thema "Intelligent recommendation system"
Thiengburanathum, Pree. „An intelligent destination recommendation system for tourists“. Thesis, Bournemouth University, 2018. http://eprints.bournemouth.ac.uk/30571/.
Der volle Inhalt der QuelleXu, Shuting. „Study and Design of an Intelligent Preconditioner Recommendation System“. UKnowledge, 2005. http://uknowledge.uky.edu/gradschool_diss/327.
Der volle Inhalt der QuelleZhang, Junjie. „Development of a consumer-oriented intelligent garment recommendation system“. Thesis, Lille 1, 2017. http://www.theses.fr/2017LIL10026/document.
Der volle Inhalt der QuelleGarment purchasing through the Internet has become an important trend for consumers of all parts of the world. However, in various garment e-shopping systems, it systematically lacks personalized recommendations, like sales advisors in classical shops, in order to propose the most relevant products to different consumers according to their body shapes and fashion requirements. In this thesis, we propose a consumer-oriented recommendation system, which can be used inside a garment online shopping system like a virtual sales advisor. This system has been developed by integrating the professional knowledge of designers and shoppers and taking into account consumers’ perception on products. Following the shopping knowledge on garments, the proposed system recommends garment products to specific consumers by successively executing three modules, namely 1) the Successful Cases Database Module; 2) the Market Forecasting Module; 3) the Knowledge-based Recommendation Module. Also, another module, called the Knowledge Updating Module.This thesis presents an original method for predicting one or several relevant product profiles from a specific consumer profile. It can effectively help consumers to choose garments from the Internet. Compared with other prediction methods, the proposed method is more robust and interpretable owing to its capacity of treating uncertainty
Dong, Min. „Development of an intelligent recommendation system to garment designers for designing new personalized products“. Thesis, Lille 1, 2017. http://www.theses.fr/2017LIL10025/document.
Der volle Inhalt der QuelleIn my PhD research project, we originally propose a Designer-oriented Intelligent Recommendation System (DIRS) for supporting the design of new personalized garment products. For developing this system, we first identify the key components of a garment design process, and then set up a number of relevant databases, from which each design scheme can be formed. Second, we acquire the anthropometric data and designer’s perception on body shapes by using a 3D body scanning system and a sensory evaluation procedure. Third, an instrumental experiment is conducted for measuring the technical parameters of fabrics, and five sensory experiments are carried out in order to acquire designers’ knowledge. The acquired data are used to classify body shapes and model the relations between human bodies and the design factors. From these models, we set up an ontology-based design knowledge base. This knowledge base can be updated by dynamically learning from new design cases. On this basis, we put forward the knowledge-based recommendation system. This system is used with a newly developed design process. This process can be performed repeatedly until the designer’s satisfaction. The proposed recommendation system has been validated through a number of successful real design cases
Lohi, Abdolkhalil. „Investigation of an intelligent personalised service recommendation system in an IMS based cellular mobile network“. Thesis, University of Westminster, 2013. https://westminsterresearch.westminster.ac.uk/item/99060/investigation-of-an-intelligent-personalised-service-recommendation-system-in-an-ims-based-cellular-mobile-network.
Der volle Inhalt der QuelleChi, Cheng. „Personalized pattern recommendation system of men’s shirts based on precise body measurement“. Electronic Thesis or Diss., Centrale Lille Institut, 2022. http://www.theses.fr/2022CLIL0003.
Der volle Inhalt der QuelleCommercial garment recommendation systems have been widely used in the apparel industry. However, existing research on digital garment design has focused on the technical development of the virtual design process, with little knowledge of traditional designers. The fit of a garment plays a significant role in whether a customer purchases that garment. In order to develop a well-fitting garment, designers and pattern makers should adjust the garment pattern several times until the customer is satisfied. Currently, there are three main disadvantages of traditional pattern-making: 1) it is very time-consuming and inefficient, 2) it relies too much on experienced designers, 3) the relationship between the human body shape and the garment is not fully explored. In practice, the designer plays a key role in a successful design process. There is a need to integrate the designer's knowledge and experience into current garment CAD systems to provide a feasible human-centered, low-cost design solution quickly for each personalized requirement. Also, data-based services such as recommendation systems, body shape classification, 3D body modelling, and garment fit assessment should be integrated into the apparel CAD system to improve the efficiency of the design process.Based on the above issues, in this thesis, a fit-oriented garment pattern intelligent recommendation system is proposed for supporting the design of personalized garment products. The system works in combination with a newly developed design process, i.e. body shape identification - design solution recommendation - 3D virtual presentation and evaluation - design parameter adjustment. This process can be repeated until the user is satisfied. The proposed recommendation system has been validated by some successful practical design cases
Robles, Sebastian. „Business intelligence in Chile, recommendations to develop local applications“. Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/70831.
Der volle Inhalt der Quelle"February 2010." Cataloged from PDF version of thesis.
Includes bibliographical references (p. 60).
The volume of information generated from enterprise applications is growing exponentially, and the cost of storage is decreasing rapidly. In addition, cloud-based applications, mobile devices and social networks are becoming relevant sources of unstructured data that provide essential information for strategic decisions making. Therefore, with time, enterprise databases will become more valuable for business but also much harder to integrate, process and analyze. Business Intelligence software was instrumental in helping organizations to analyze information and provide reports to support business decision-making. Accordingly, BI applications evolved as enterprise information grew, hardware-processing capacities developed, and storage cost is being reduced significantly. In this paper, we will analyze the current BI world market and compare it with the Chilean market, in order to come up with business plan recommendations for local developers and systems integrators interested in capitalizing the opportunities generated by the global BI software market consolidation.
by Sebastian Robles.
S.M.in Engineering and Management
Schröder, Anna Marie. „Unboxing The Algorithm : Understandability And Algorithmic Experience In Intelligent Music Recommendation Systems“. Thesis, Malmö universitet, Institutionen för konst, kultur och kommunikation (K3), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-43841.
Der volle Inhalt der QuelleLagerqvist, Gustaf, und Anton Stålhandske. „Recommendation systems for recruitment within an educational context“. Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-42902.
Der volle Inhalt der QuelleSun, Runpu. „Using Social Media Intelligence to Support Business Knowledge Discovery and Decision Making“. Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/145394.
Der volle Inhalt der QuelleBücher zum Thema "Intelligent recommendation system"
Varlamov, Oleg. Fundamentals of creating MIVAR expert systems. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1513119.
Der volle Inhalt der QuelleVarlamov, Oleg. Mivar databases and rules. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1508665.
Der volle Inhalt der QuelleWilliams, Bradley P. ITS procurement: Analysis and recommendations. Charlottesville, Va: Virginia Transportation Research Council, 1994.
Den vollen Inhalt der Quelle findenAmerica, IVHS. Federal IVHS program recommendations for fiscal years 1994 and 1995. Washington, DC: IVHS America, 1992.
Den vollen Inhalt der Quelle findenservice), SpringerLink (Online, Hrsg. Modeling Intention in Email: Speech Acts, Information Leaks and Recommendation Models. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
Den vollen Inhalt der Quelle findenAffairs, United States Congress Senate Committee on Homeland Security and Governmental. Ensuring full implementation of the 9/11 Commission's recommendations: Hearing before the Committee on Homeland Security and Governmental Affairs, United States Senate, One Hundred Tenth Congress, first session, January 7, 2007. Washington: U.S. G.P.O., 2009.
Den vollen Inhalt der Quelle findenEnsuring full implementation of the 9/11 Commission's recommendations: Hearing before the Committee on Homeland Security and Governmental Affairs, United States Senate, One Hundred Tenth Congress, first session, January 7, 2007. Washington: U.S. G.P.O., 2009.
Den vollen Inhalt der Quelle findenChe, Natasha X. Intelligent Export Diversification: An Export Recommendation System with Machine Learning. International Monetary Fund, 2020.
Den vollen Inhalt der Quelle findenChe, Natasha X. Intelligent Export Diversification: An Export Recommendation System with Machine Learning. International Monetary Fund, 2020.
Den vollen Inhalt der Quelle findenChe, Natasha X. Intelligent Export Diversification: An Export Recommendation System with Machine Learning. International Monetary Fund, 2020.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Intelligent recommendation system"
Padhi, Ashis Kumar, Ayog Mohanty und Sipra Sahoo. „FindMoviez: A Movie Recommendation System“. In Intelligent Systems, 49–57. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6081-5_5.
Der volle Inhalt der QuelleFrykowska, Adrianna, Izabela Zbieć, Patryk Kacperski, Peter Vesely und Andrea Studenicova. „Movies Recommendation System“. In Advances in Intelligent Networking and Collaborative Systems, 579–85. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29035-1_56.
Der volle Inhalt der QuelleKumar, Keshav, Vatsal Sinha, Aman Sharma, M. Monicashree, M. L. Vandana und B. S. Vijay Krishna. „AI-Assisted College Recommendation System“. In Intelligent Sustainable Systems, 141–50. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2894-9_11.
Der volle Inhalt der QuelleGund, Rohit, James Andro-Vasko, Doina Bein und Wolfgang Bein. „Recommendation System Using MixPMF“. In Advances in Intelligent Systems and Computing, 263–68. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97652-1_32.
Der volle Inhalt der QuelleChaitra, D., V. R. Badri Prasad und B. N. Vinay. „A Comprehensive Travel Recommendation System“. In ICT with Intelligent Applications, 623–31. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4177-0_62.
Der volle Inhalt der QuelleZhao, Ziyin, Lei Zhou und Tongtong Zhang. „Intelligent Recommendation System for Eyeglass Design“. In Advances in Intelligent Systems and Computing, 402–11. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20441-9_42.
Der volle Inhalt der QuelleJain, Kartik Narendra, Vikrant Kumar, Praveen Kumar und Tanupriya Choudhury. „Movie Recommendation System: Hybrid Information Filtering System“. In Intelligent Computing and Information and Communication, 677–86. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7245-1_66.
Der volle Inhalt der QuelleForestiero, Agostino. „AIRS: Ant-Inspired Recommendation System“. In Advances in Intelligent Systems and Computing, 213–24. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11310-4_19.
Der volle Inhalt der QuelleLekshmi Priya, T., und Harikumar Sandhya. „Matrix Factorization for Recommendation System“. In Advances in Intelligent Systems and Computing, 267–80. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3514-7_22.
Der volle Inhalt der QuelleVoggu, Suman Venkata Sai, Yuvraj Singh Champawat, Swaraj Kothari und B. K. Tripathy. „Recommendation System Using Community Identification“. In Advances in Intelligent Systems and Computing, 125–32. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1286-5_11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Intelligent recommendation system"
Toskova, Asya, und Georgi Penchev. „Intelligent game recommendation system“. In THERMOPHYSICAL BASIS OF ENERGY TECHNOLOGIES (TBET 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0042063.
Der volle Inhalt der QuelleStan, Cristiana, und Irina Mocanu. „An Intelligent Personalized Fashion Recommendation System“. In 2019 22nd International Conference on Control Systems and Computer Science (CSCS). IEEE, 2019. http://dx.doi.org/10.1109/cscs.2019.00042.
Der volle Inhalt der QuelleChoi, Chang, Miyoung Cho, Junho Choi, Myunggwon Hwang, Jongan Park und Pankoo Kim. „Travel Ontology for Intelligent Recommendation System“. In 2009 Third Asia International Conference on Modelling & Simulation. IEEE, 2009. http://dx.doi.org/10.1109/ams.2009.75.
Der volle Inhalt der QuelleZHANG, J., X. ZENG, L. KOEHL und M. DONG. „CONSUMER-ORIENTED INTELLIGENT GARMENT RECOMMENDATION SYSTEM“. In Conference on Uncertainty Modelling in Knowledge Engineering and Decision Making (FLINS 2016). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813146976_0140.
Der volle Inhalt der QuelleTu, Qingqing, und Le Dong. „An Intelligent Personalized Fashion Recommendation System“. In 2010 International Conference on Communications, Circuits and Systems (ICCCAS). IEEE, 2010. http://dx.doi.org/10.1109/icccas.2010.5581949.
Der volle Inhalt der QuelleSaxena, Rohan, Maheep Chaudhary, Chandresh Kumar Maurya und Shitala Prasad. „An Intelligent Recommendation-cum-Reminder System“. In CODS-COMAD 2022: 5th Joint International Conference on Data Science & Management of Data (9th ACM IKDD CODS and 27th COMAD). New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3493700.3493724.
Der volle Inhalt der QuelleOng, Kyle, Su-Cheng Haw und Kok-Why Ng. „Deep Learning Based-Recommendation System“. In CIIS 2019: 2019 The 2nd International Conference on Computational Intelligence and Intelligent Systems. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3372422.3372444.
Der volle Inhalt der QuelleWong, Tak-Lam. „An intelligent recommendation system using preference regularization“. In 2014 14th International Conference on Intelligent Systems Design and Applications (ISDA). IEEE, 2014. http://dx.doi.org/10.1109/isda.2014.7066284.
Der volle Inhalt der QuelleMeehan, Kevin, Tom Lunney, Kevin Curran und Aiden McCaughey. „Context-aware intelligent recommendation system for tourism“. In 2013 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops 2013). IEEE, 2013. http://dx.doi.org/10.1109/percomw.2013.6529508.
Der volle Inhalt der QuelleUppada, Santosh Kumar, Dani Prakash Esukapalli und B. Sivaselvan. „MitrApp: An Intelligent Recommendation System For Counselling“. In 2020 IEEE 4th Conference on Information & Communication Technology (CICT). IEEE, 2020. http://dx.doi.org/10.1109/cict51604.2020.9312107.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Intelligent recommendation system"
Gehlhaus, Diana, Luke Koslosky, Kayla Goode und Claire Perkins. U.S. AI Workforce: Policy Recommendations. Center for Security and Emerging Technology, Oktober 2021. http://dx.doi.org/10.51593/20200087.
Der volle Inhalt der QuelleLegree, Peter J., und Philip D. Gillis. A Review of and Recommendations for Procedures Used to Evaluate the External Effectiveness of Intelligent Tutoring Systems. Fort Belvoir, VA: Defense Technical Information Center, März 1991. http://dx.doi.org/10.21236/ada236625.
Der volle Inhalt der QuelleReeb, Tyler D., und Stacey Park. Trade and Transportation Talent Pipeline Blueprints: Building UniversityIndustry Talent Pipelines in Colleges of Continuing and Professional Education. Mineta Transportation Institute, Februar 2023. http://dx.doi.org/10.31979/mti.2023.2144.
Der volle Inhalt der QuellePyta, V., Bharti Gupta, Shaun Helman, Neale Kinnear und Nathan Stuttard. Update of INDG382 to include vehicle safety technologies. TRL, Juli 2020. http://dx.doi.org/10.58446/thco7462.
Der volle Inhalt der QuelleBourrier, Mathilde, Michael Deml und Farnaz Mahdavian. Comparative report of the COVID-19 Pandemic Responses in Norway, Sweden, Germany, Switzerland and the United Kingdom. University of Stavanger, November 2022. http://dx.doi.org/10.31265/usps.254.
Der volle Inhalt der QuelleDaudelin, Francois, Lina Taing, Lucy Chen, Claudia Abreu Lopes, Adeniyi Francis Fagbamigbe und Hamid Mehmood. Mapping WASH-related disease risk: A review of risk concepts and methods. United Nations University Institute for Water, Environment and Health, Dezember 2021. http://dx.doi.org/10.53328/uxuo4751.
Der volle Inhalt der Quelle