Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Interfacial deformation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Interfacial deformation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Interfacial deformation"
Stone, H. A., und L. G. Leal. „The effects of surfactants on drop deformation and breakup“. Journal of Fluid Mechanics 220 (November 1990): 161–86. http://dx.doi.org/10.1017/s0022112090003226.
Der volle Inhalt der QuelleMangipudi, V. S., und M. Tirrell. „Contact-Mechanics-Based Studies of Adhesion between Polymers“. Rubber Chemistry and Technology 71, Nr. 3 (01.07.1998): 407–48. http://dx.doi.org/10.5254/1.3538490.
Der volle Inhalt der QuellePelipenko, Jan, Julijana Kristl, Romana Rošic, Saša Baumgartner und Petra Kocbek. „Interfacial rheology: An overview of measuring techniques and its role in dispersions and electrospinning“. Acta Pharmaceutica 62, Nr. 2 (01.06.2012): 123–40. http://dx.doi.org/10.2478/v10007-012-0018-x.
Der volle Inhalt der QuelleTAKADA, NAOKI, AKIO TOMIYAMA und SHIGEO HOSOKAWA. „LATTICE BOLTZMANN SIMULATION OF INTERFACIAL DEFORMATION“. International Journal of Modern Physics B 17, Nr. 01n02 (20.01.2003): 179–82. http://dx.doi.org/10.1142/s0217979203017308.
Der volle Inhalt der QuelleTakahashi, Yasuo, und Michinobu Inoue. „Numerical Study of Wire Bonding—Analysis of Interfacial Deformation Between Wire and Pad“. Journal of Electronic Packaging 124, Nr. 1 (13.03.2001): 27–36. http://dx.doi.org/10.1115/1.1413765.
Der volle Inhalt der QuelleSamanta, Amit, und Weinan E. „Interfacial diffusion aided deformation during nanoindentation“. AIP Advances 6, Nr. 7 (Juli 2016): 075002. http://dx.doi.org/10.1063/1.4958299.
Der volle Inhalt der QuelleHaruki, Sakamaki, Kumagai Ichiro, Oishi Yoshihiko, Tasaka Yuji und Murai Yuichi. „1051 FLOWS AND INTERFACIAL DEFORMATION AROUND A HYDROFOIL BENEATH A FREE SURFACE“. Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2013.4 (2013): _1051–1_—_1051–6_. http://dx.doi.org/10.1299/jsmeicjwsf.2013.4._1051-1_.
Der volle Inhalt der QuelleWETZEL, ERIC D., und CHARLES L. TUCKER. „Droplet deformation in dispersions with unequal viscosities and zero interfacial tension“. Journal of Fluid Mechanics 426 (10.01.2001): 199–228. http://dx.doi.org/10.1017/s0022112000002275.
Der volle Inhalt der QuelleLee, Doojin, und Amy Q. Shen. „Interfacial Tension Measurements in Microfluidic Quasi-Static Extensional Flows“. Micromachines 12, Nr. 3 (06.03.2021): 272. http://dx.doi.org/10.3390/mi12030272.
Der volle Inhalt der QuelleKomvopoulos, K., und W. Yan. „Three-Dimensional Elastic-Plastic Fractal Analysis of Surface Adhesion in Microelectromechanical Systems“. Journal of Tribology 120, Nr. 4 (01.10.1998): 808–13. http://dx.doi.org/10.1115/1.2833783.
Der volle Inhalt der QuelleDissertationen zum Thema "Interfacial deformation"
Hargreaves, Alexander Leighton. „Optical deformation of microdroplets at ultralow interfacial tension“. Thesis, Durham University, 2016. http://etheses.dur.ac.uk/11617/.
Der volle Inhalt der QuelleTze, William tai-Yin. „Effects of Fiberimatiux Interactions on the Interfacial Deformation Micromechanics of Cellulose-Fiberipolymer Composites“. Fogler Library, University of Maine, 2003. http://www.library.umaine.edu/theses/pdf/TzeWT2003.pdf.
Der volle Inhalt der QuelleTsai, Scott. „Magnetic Spheres in Viscous Flows and at Interfaces: Sorting, Coating, and Interfacial Deformation“. Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10151.
Der volle Inhalt der QuelleEngineering and Applied Sciences
Rusli, Rafeadah. „Interfacial micromechanics of natural cellulose whisker polymer nanocomposites using Raman spectroscopy“. Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/interfacial-micromechanics-of-natural-cellulose-whisker-polymer-nanocomposites-using-raman-spectroscopy(2eab8693-78b1-4241-bcfb-f7d2ae39fbf6).html.
Der volle Inhalt der QuelleZhou, Diwen. „Interfacial dynamics in complex fluids : studies of drop and free-surface deformation in polymer solutions“. Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/17457.
Der volle Inhalt der QuelleHabibzadeh, Pouya. „Small Scale Plasticity With Confinement and Interfacial Effects“. Doctoral thesis, Universite Libre de Bruxelles, 2016. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/226220.
Der volle Inhalt der QuelleDoctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Peng, Xuan. „Co-deformation and bonding of multi-component billets with application to Nb-Sn based superconductor processing“. Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1127096847.
Der volle Inhalt der QuelleTitle from first page of PDF file. Document formatted into pages; contains xix, 182 p.; also includes graphics (some col.). Includes bibliographical references (p. 177-182). Available online via OhioLINK's ETD Center
Strömbro, Jessica. „Micro-mechanical mechanisms for deformation in polymer-material structures“. Doctoral thesis, KTH, Hållfasthetslära (Inst.), 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4626.
Der volle Inhalt der QuelleQC 20100910
Abi, Chebel Nicolas. „Dynamique et rhéologie interfaciales à haute fréquence d'une goutte oscillante“. Thesis, Toulouse, INPT, 2009. http://www.theses.fr/2009INPT043G/document.
Der volle Inhalt der QuelleWe present an experimental study of oscillating drop interfacial dynamics at a wide frequency range, especially at high frequency. A characterization method of drops oscillation dynamics has been developed. The oscillations are generated by imposing low amplitude periodic variation of volume to a drop which is attached to a capillary tip. The present method is based on the identification of the drop eigenmodes and the determination of their frequencies and damping rates. It has been applied to characterize several liquid-liquid systems. Three types of interface have been identified. For interfaces of type 1 (heptane/water without added surfactant), each eigenmode is modelled by a weakly damped linear oscillator. Eigenfrequencies and damping rates are well predicted by the linear theory. Interfaces of Types 2 and 3 are obtained by adding crude oil to the disperse phase. Oil native surfactants (asphaltenes, resins) adsorb on the drop interface and provide the latter with viscoelastic behaviour. For young interfaces (type 2 with aging time below 20 minutes), eigenfrequencies remain well predicted by the theory, which deals with non contaminated interfaces, whereas the measured damping rates are significantly higher than the theoretical values. On the other hand, aged interfaces (type 3) exhibit different eigenmodes, of which eigenfrequencies are much higher than the resonance frequencies measured for the young interfaces. At high frequency, the dynamics of aged interfaces are governed by the elasticity of the network constituted by the crude oil amphiphilic species, while the dynamics of young interfaces are governed by interfacial tension. Freely decaying oscillations of a rising drop in a liquid at rest without added surfactant were also considered. Measured frequencies for the first four eigenmodes are in good agreement with the linear theory. However, measured damping rates are much higher than the theoretical rates for non contaminated interfaces. In fact, residual adsorbed species at the heptane/water interface induce Marangoni effects and thus gradients of interfacial tension. Therefore, vorticity production within the boundary layers is enhanced, which explains the observed increase of the oscillation damping rates
Zhang, Hao. „Écoulement des fluides et déformation interfaciale : nano-rhéologie et force de portance“. Electronic Thesis or Diss., Bordeaux, 2025. http://www.theses.fr/2025BORD0027.
Der volle Inhalt der QuelleThis thesis investigates the interplay between fluid flow and interfacial deformation using Atomic Force Microscopy (AFM). First, AFM was employed to explore the resonant thermal capillary fluctuations (RTCF) of bubble and drop surfaces, enabling the measurement of surface elasticity and bulk viscosity in surfactant-laden air/water interfaces and polymer solutions. These measurements extended the frequency range for rheological investigations, effectively overcoming the limitations of classical rheometers.Next, we introduced a non-contact method to assess the mechanical properties of living cells based on the elastohydrodynamic (EHD) interaction between the thermal vibrations of the AFM cantilever and the cell deformations. This method enabled the precise determination of the elastic modulus of a living cell for different frequencies.Finally, we conducted the first direct and quantitative measurement of the lift force acting on a sphere moving along a liquid-liquid interface. This force, arising from the coupling between viscous flow and capillary deformation of the interface, was measured as a function of the distance between the sphere and the interface using an atomic force microscope (AFM). We investigated various liquid interfaces, working frequencies, sliding velocities, and two different sphere radii. The findings provide valuable insights into interfacial phenomena and enhance the understanding of interactions between fluid flow and soft interfaces
Bücher zum Thema "Interfacial deformation"
Thermocapillary flow with evaporation and condensation at low gravit. [Washington, DC: National Aeronautics and Space Administration, 1995.
Den vollen Inhalt der Quelle findenKudinov, V. V., N. V. Korneeva und I. K. Krylov. Effect of components on the properties of composite materials. Nauka Publishers, 2021. http://dx.doi.org/10.7868/9785020408654.
Der volle Inhalt der QuelleBuchteile zum Thema "Interfacial deformation"
Aust, K. T., U. Erb und G. Palumbo. „Interfacial Structures and Properties“. In Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, 107–28. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1765-4_5.
Der volle Inhalt der QuelleBuisson, M., E. Patoor und M. Berveiller. „Constitutive Equations for Deformations Induced by Interfacial Motions“. In Anisotropy and Localization of Plastic Deformation, 536–39. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3644-0_124.
Der volle Inhalt der QuelleBalasubramaniam, R. „Unsteady Thermocapillary Flow and Free Surface Deformation in a Thin Liquid Layer“. In Interfacial Fluid Dynamics and Transport Processes, 201–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45095-5_10.
Der volle Inhalt der QuelleMoran, B., M. Gosz und J. D. Achenbach. „Effect of a Viscoelastic Interfacial Zone on the Mechanical Behavior and Failure of Fiber-Reinforced Composites“. In Inelastic Deformation of Composite Materials, 35–49. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4613-9109-8_2.
Der volle Inhalt der QuelleShibutani, Yoji, Hiroshi Kitagawa und Takayuki Nakamura. „Growth of interfacial inhomogeneous deformation in thin laminated material subjected to biaxial tension“. In Large Plastic Deformations, 261–69. London: Routledge, 2021. http://dx.doi.org/10.1201/9780203749173-29.
Der volle Inhalt der QuelleBarrett, Christopher, und Haitham El Kadiri. „The Deformation Gradient of Interfacial Defects on Twin-like Interfaces“. In Magnesium Technology 2015, 121–25. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119093428.ch24.
Der volle Inhalt der QuelleZinemanas, Daniel, und Avinoam Nir. „A Dynamic Free Surface Deformation Driven by Anisotropic Interfacial Forces“. In Variational Methods for Free Surface Interfaces, 165–72. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4656-5_19.
Der volle Inhalt der QuelleBarrett, Christopher, und Haitham El Kadiri. „The Deformation Gradient of Interfacial Defects on Twin-like Interfaces“. In Magnesium Technology 2015, 121–25. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48185-2_24.
Der volle Inhalt der QuelleZeng, Tongyan, Essam F. Abo-Serie, Manus Henry und James Jewkes. „Thermal Optimisation Model for Cooling Channel Design Using the Adjoint Method in 3D Printed Aluminium Die-Casting Tools“. In Springer Proceedings in Energy, 333–40. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30960-1_31.
Der volle Inhalt der QuelleHagiwara, Yoshimichi. „Numerical Simulation of the Velocity Fluctuation and the Interfacial Deformation of Liquid-Liquid Dispersed Two-Phase Flow“. In Fluid Mechanics and Its Applications, 179–83. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0457-9_34.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Interfacial deformation"
Váradi, Károly, Zoltán Néder, Klaus Friedrich und Joachim Flöck. „Finite Element Contact, Stress and Strain Analysis of a Composite Fibre-Matrix Micro System Subjected to Ball Indentation“. In ASME 1997 International Mechanical Engineering Congress and Exposition, 23–36. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-1340.
Der volle Inhalt der QuelleIto, Hideaki, Tsutomu Ezumi, Susumu Takahashi und Kazuo Sato. „Impact shearing deformation behavior of interfacial crack in ENF test specimen“. In 24th International Congress on High-Speed Photography and Photonics, herausgegeben von Kazuyoshi Takayama, Tsutomo Saito, Harald Kleine und Eugene V. Timofeev. SPIE, 2001. http://dx.doi.org/10.1117/12.424261.
Der volle Inhalt der QuelleJenn-Ming Song, Chien-Wei Su, Yi-Shao Lai und Ying-Ta Chiu. „Time dependent deformation behavior of interfacial intermetallic compounds in electronic solder joints“. In 2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). IEEE, 2009. http://dx.doi.org/10.1109/impact.2009.5382227.
Der volle Inhalt der QuelleHeffes, M. J., und H. F. Nied. „Analysis of Interface Cracking in Flip Chip Packages With Viscoplastic Solder Deformation“. In ASME 2003 International Electronic Packaging Technical Conference and Exhibition. ASMEDC, 2003. http://dx.doi.org/10.1115/ipack2003-35346.
Der volle Inhalt der QuelleHandoko, R. A., J. L. Beuth, M. J. Stiger, F. S. Pettit und G. H. Meier. „Mechanisms for Interfacial Toughness Loss in Thermal Barrier Coating Systems“. In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2685.
Der volle Inhalt der QuelleSharifi Kia, Danial, Shahrzad Towfighian und Congrui Jin. „Predicting the Output of a Triboelectric Energy Harvester Undergoing Mechanical Pressure“. In ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/smasis2016-9157.
Der volle Inhalt der QuelleHossein, Mohammad A., Yue Zhang und Arend van der Zande. „Three-dimensional deformation and stretchable photonics enabled by interfacial slip in 2D material heterostructures“. In Physical Chemistry of Semiconductor Materials and Interfaces IX, herausgegeben von Daniel Congreve, Christian Nielsen und Andrew J. Musser. SPIE, 2020. http://dx.doi.org/10.1117/12.2567539.
Der volle Inhalt der QuelleUtiugov, Grigorii, und Vladimir Chirkov. „The Change in Interfacial Tension Over Time and Its Effect on the Droplet Deformation Dynamics“. In 2022 IEEE 21st International Conference on Dielectric Liquids (ICDL). IEEE, 2022. http://dx.doi.org/10.1109/icdl49583.2022.9830945.
Der volle Inhalt der QuelleSeol, Myeong-Lok, Jin-Woo Han, Jong-Ho Woo, Dong-Il Moon, Jee-Yeon Kim und Yang-Kyu Choi. „Comprehensive analysis of deformation of interfacial micro-nano structure by applied force in triboelectric energy harvester“. In 2014 IEEE International Electron Devices Meeting (IEDM). IEEE, 2014. http://dx.doi.org/10.1109/iedm.2014.7047010.
Der volle Inhalt der QuelleYang, J., und K. Komvopoulos. „A Mechanics Approach to Static Friction of Elastic-Plastic Fractal Surfaces“. In ASME/STLE 2004 International Joint Tribology Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/trib2004-64271.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Interfacial deformation"
Hsiung, L. Interfacial Control of Deformation Twinning in Creep-Deformed TiAl/Ti3Al Nanolaminate. Office of Scientific and Technical Information (OSTI), November 2004. http://dx.doi.org/10.2172/15014527.
Der volle Inhalt der QuelleDEFORMATION OF STEEL-BAMBOO COMPOSITE BEAM CONSIDERING THE EFFECT OF INTERFACIAL SLIPPAGE. The Hong Kong Institute of Steel Construction, September 2018. http://dx.doi.org/10.18057/ijasc.2018.14.3.1.
Der volle Inhalt der Quelle