Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Ionic Solids.

Zeitschriftenartikel zum Thema „Ionic Solids“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Ionic Solids" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Kim, Sangtae, Shu Yamaguchi, and James A. Elliott. "Solid-State Ionics in the 21st Century: Current Status and Future Prospects." MRS Bulletin 34, no. 12 (2009): 900–906. http://dx.doi.org/10.1557/mrs2009.211.

Der volle Inhalt der Quelle
Annotation:
AbstractThe phenomenon of ion migration in solids forms the basis for a wide variety of electrochemical applications, ranging from power generators and chemical sensors to ionic switches. Solid-state ionics (SSI) is the field of research concerning ionic motions in solids and the materials properties associated with them. Owing to the ever-growing technological importance of electrochemical devices, together with the discoveries of various solids displaying superior ionic conductivity at relatively low temperatures, research activities in this field have grown rapidly since the 1960s, culminat
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Shimizu, Y., H. Sogabe, and Y. Terashima. "The effects of colloidal humic substances on the movement of non-ionic hydrophobic organic contaminants in groundwater." Water Science and Technology 38, no. 7 (1998): 159–67. http://dx.doi.org/10.2166/wst.1998.0289.

Der volle Inhalt der Quelle
Annotation:
A controlled experimental study of the sorption of colloidal humic substances (humic acid) and a non-ionic hydrophobic organic compound (naphthalene) onto typical inorganic constituents of aquifer solids was performed using four types of model solid phases {i.e., individual model solids (montmorillonite, kaolinite, amorphous aluminosilicate gel, and amorphous iron oxides) and combined model solids (montmorillonite coated by amorphous aluminosilicate gel or iron oxides)}, which are synthesized in the laboratory. The batch experimental results indicated that the sorption of non-ionic hydrophobic
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ramli, Nur Aainaa Syahirah, and Nor Aishah Saidina Amin. "Ionic Solid Nanomaterials: Synthesis, Characterization and Catalytic Properties Investigation." Advanced Materials Research 699 (May 2013): 155–60. http://dx.doi.org/10.4028/www.scientific.net/amr.699.155.

Der volle Inhalt der Quelle
Annotation:
A series of ionic solid nanomaterials denoted as IS1, IS2 and IS3 have been prepared using butylmethylimidazolium bromide ([BMIM][Br]) ionic liquid as cation, and three types of heteropolyacid; phosphotungstic acid (H3PW12O40), phosphomolybdic acid (H3PMo12O40), and silicotungstic acid (H4SiW12O40) as anion. The nanomaterials were characterized by FTIR, XRD, SEM, TGA, NH3-TPD and BET. Its catalytic performance was investigated by catalyzing glucose conversion to levulinic acid and hydroxymethylfurfural. It was observed that the ionic solids have higher acidity with semi amorphous structure, hi
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Shimizu, Y., and H. M. Liljestrand. "Sorption of Polycyclic Aromatic Hydrocarbons onto Natural Solids: Determination by Fluorescence Quenching Method." Water Science and Technology 23, no. 1-3 (1991): 427–36. http://dx.doi.org/10.2166/wst.1991.0442.

Der volle Inhalt der Quelle
Annotation:
A fluorescence quenching method was used to determine the sorption of polycyclic aromatic hydrocarbons (PAHs) onto natural solids in batch experiments. This method is based upon the observation that PAHs fluoresce in aqueous solution but not when associated with natural solids. It avoids problems of incomplete solid-liquid separation. As natural solids, eleven different USEPA soils and sediments were used. Anthracene and 2-aminoanthracene, which are respectively non-ionic and ionic PAHs, were chosen as sorbates. The fractional decrease in fluorescence intensity as a function of added natural s
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Liaw, B. Y. "Electrochemical Aspects of Ionic Solids." Key Engineering Materials 125-126 (October 1996): 133–62. http://dx.doi.org/10.4028/www.scientific.net/kem.125-126.133.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wintersgill, Mary C. "Dielectric spectroscopy of ionic solids." Radiation Effects and Defects in Solids 119-121, no. 1 (1991): 217–22. http://dx.doi.org/10.1080/10420159108224878.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hueckel, Theodore, Glen M. Hocky, Jeremie Palacci, and Stefano Sacanna. "Ionic solids from common colloids." Nature 580, no. 7804 (2020): 487–90. http://dx.doi.org/10.1038/s41586-020-2205-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Thurzo, I., and D. R. T. Zahn. "Revealing ionic motion molecular solids." Journal of Applied Physics 99, no. 2 (2006): 023701. http://dx.doi.org/10.1063/1.2158136.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Itoh, Noriaki, and Katsumi Tanimura. "Radiation effects in ionic solids." Radiation Effects 98, no. 1-4 (1986): 269–87. http://dx.doi.org/10.1080/00337578608206118.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kumar, Binod. "Ionic Transport through Heterogeneous Solids." Transactions of the Indian Ceramic Society 66, no. 3 (2007): 123–30. http://dx.doi.org/10.1080/0371750x.2007.11012264.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Sharma, S. K. "Thermal energy of ionic solids." Journal of Alloys and Compounds 506, no. 1 (2010): 14–17. http://dx.doi.org/10.1016/j.jallcom.2010.06.171.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

MICHALSKE, TERRY A., BRUCE C. BUNKER, and S. W. FREIMAN. "Stress Corrosion of Ionic and Mixed Ionic/Covalent Solids." Journal of the American Ceramic Society 69, no. 10 (1986): 721–24. http://dx.doi.org/10.1111/j.1151-2916.1986.tb07332.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Laskar, A. L. "Diffusion in Ionic Solids: Unsolved Problems." Defect and Diffusion Forum 83 (January 1992): 207–34. http://dx.doi.org/10.4028/www.scientific.net/ddf.83.207.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Elango, M. "Hot holes in irradiated ionic solids." Radiation Effects and Defects in Solids 128, no. 1-2 (1994): 1–13. http://dx.doi.org/10.1080/10420159408218851.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Feltz, A., and P. Büchner. "Structure and ionic conduction in solids." Journal of Non-Crystalline Solids 92, no. 2-3 (1987): 397–406. http://dx.doi.org/10.1016/s0022-3093(87)80058-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Chadwick, A. V. "Electrical conductivity measurements of ionic solids." Philosophical Magazine A 64, no. 5 (1991): 983–98. http://dx.doi.org/10.1080/01418619108204872.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Schmidt, U. C., M. Fichtner, J. Goschnick, M. Lipp, and H. J. Ache. "Analysis of ionic solids with SNMS." Fresenius' Journal of Analytical Chemistry 341, no. 3-4 (1991): 260–64. http://dx.doi.org/10.1007/bf00321560.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Khanna, S. N., and P. Jena. "Designing ionic solids from metallic clusters." Chemical Physics Letters 219, no. 5-6 (1994): 479–83. http://dx.doi.org/10.1016/0009-2614(94)00097-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Kusmartsev, F. V. "Strings and stripes in ionic solids." Physica E: Low-dimensional Systems and Nanostructures 18, no. 1-3 (2003): 352–53. http://dx.doi.org/10.1016/s1386-9477(02)01091-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Cox, P. A., and A. A. Williams. "HREELS studies of simple ionic solids." Journal of Electron Spectroscopy and Related Phenomena 39 (January 1986): 45–58. http://dx.doi.org/10.1016/0368-2048(86)85031-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Santamaría-Holek, Iván, Aldo Ledesma-Durán, S. I. Hernández, C. García-Alcántara, Andreu Andrio, and Vicente Compañ. "Entropic restrictions control the electric conductance of superprotonic ionic solids." Physical Chemistry Chemical Physics 22, no. 2 (2020): 437–45. http://dx.doi.org/10.1039/c9cp05486c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Yoshinari, Nobuto, Satoshi Yamashita, Yosuke Fukuda, Yasuhiro Nakazawa, and Takumi Konno. "Mobility of hydrated alkali metal ions in metallosupramolecular ionic crystals." Chemical Science 10, no. 2 (2019): 587–93. http://dx.doi.org/10.1039/c8sc04204g.

Der volle Inhalt der Quelle
Annotation:
The ion-conducting behaviour of alkali metal ions in ionic solids (M<sub>6</sub>[1]·nH<sub>2</sub>O) resembles that in aqueous solutions; the solid-state conductivities increase in the order of M = Li<sup>+</sup> &lt; Na<sup>+</sup> &lt; K<sup>+</sup>.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Gamsjäger, Heinz. "Solubility phenomena in science and education: Experiments, thermodynamic analyses, and theoretical aspects." Pure and Applied Chemistry 85, no. 11 (2013): 2059–76. http://dx.doi.org/10.1351/pac-con-13-01-04.

Der volle Inhalt der Quelle
Annotation:
Solubility equilibria between solid salts, salt hydrates, and water play an important role in fundamental and applied branches of chemistry. The continuous interest in this field has been reflected by the 15th International Symposium on Solubility Phenomena as well as by the ongoing IUPAC-NIST Solubility Data Series (SDS), which by now comprises close to 100 volumes. Three typical examples concerning solubility phenomena of ionic solids in aqueous solutions are discussed: (1) sparingly soluble, simple molybdates; (2) sparingly soluble ionic solids with basic anions; and (3) hydrolysis of inert
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Glasser, Leslie, and H. Donald Brooke Jenkins. "Predictive thermodynamics for ionic solids and liquids." Physical Chemistry Chemical Physics 18, no. 31 (2016): 21226–40. http://dx.doi.org/10.1039/c6cp00235h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Defferriere, Thomas, Colin Gilgenbach, Matthias Müller, James F. Christian, James LeBeau, and Harry L. Tuller. "Ionic Conduction-Based Polycrystalline Oxide Radiation-Ionic Detection Effects." ECS Meeting Abstracts MA2024-02, no. 64 (2024): 4327. https://doi.org/10.1149/ma2024-02644327mtgabs.

Der volle Inhalt der Quelle
Annotation:
We recently demonstrated the ability to use photogenerated charge carriers to modulate the grain boundary resistance of a model polycrystalline oxygen solid electrolyte thin film (Gd-doped CeO2)[i]. These findings were inspired by the recognition that above bandgap light is well known to reduce band bending at interfaces by providing additional charge carriers which screen potential barriers. While our initial observations were limited to thin films due to the short absorption depths of above bandgap light, we then demonstrated that the same concept is applicable using gamma radiation, which i
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Sui, Hong, Jingjing Zhou, Guoqiang Ma, et al. "Removal of Ionic Liquids from Oil Sands Processing Solution by Ion-Exchange Resin." Applied Sciences 8, no. 9 (2018): 1611. http://dx.doi.org/10.3390/app8091611.

Der volle Inhalt der Quelle
Annotation:
Ionic liquids (ILs) have been reported to be good process aids for enhanced bitumen recovery from oil sands. However, after the extraction, some ionic liquids are left in the residual solids or solutions. Herein, a washing–ion exchange combined method has been designed for the removal of two imidazolium-based ILs, ([Bmim][BF4] and [Emim][BF4]), from residual sands after ILs-enhanced solvent extraction of oil sands. This process was conducted as two steps: water washing of the residual solids to remove ILs into aqueous solution; adsorption and desorption of ILs from the solution by the sulfonic
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Aniya, Masaru. "Bonding character and ionic conduction in solid electrolytes." Pure and Applied Chemistry 91, no. 11 (2019): 1797–806. http://dx.doi.org/10.1515/pac-2018-1220.

Der volle Inhalt der Quelle
Annotation:
Abstract The properties of the materials are intimately related to the nature of the chemical bond. Research to explain the peculiarities of superionic materials by focusing on the bonding character of the materials is presented. In particular, a brief review of some fundamental aspects of superionic conductors is given based on the talk presented at “Solid State Chemistry 2018, Pardubice” in addition to some new results related to the subject. Specifically, the topics on bond fluctuation model of ionic conductors, the role of medium range structure in the ionic conductivity, bonding aspects o
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Poon, Louis, Jacob R. Hum, and Richard G. Weiss. "Neat Linear Polysiloxane-Based Ionic Polymers: Insights into Structure-Based Property Modifications and Applications." Macromol 1, no. 1 (2020): 2–17. http://dx.doi.org/10.3390/macromol1010002.

Der volle Inhalt der Quelle
Annotation:
A diverse range of linear polysiloxane-based ionic polymers that are hydrophobic and highly flexible can be obtained by substituting the polymers with varying amounts of ionic centers. The materials can be highly crystalline solids, amorphous soft solids, poly(ionic) liquids or viscous polymer liquids. A key to understanding how structural variations can lead to these different materials is the establishment of correlations between the physical (dynamic and static) properties and the structures of the polymers at different distance scales. This short review provides such correlations by examin
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Huggins, Robert A. "Solid State Ionics." MRS Bulletin 14, no. 9 (1989): 18–21. http://dx.doi.org/10.1557/s0883769400061698.

Der volle Inhalt der Quelle
Annotation:
This issue of the MRS BULLETIN contains three articles relating to the general field that has come to be known as Solid State Ionics. The central feature of this area of science and emerging technology is the rapid transport of atomic or ionic species within solids, and the various phenomena, of both scientific and technological interest, that are related to it.Attention to this area has grown greatly in recent years because of the rapidly increasing recognition of the possibility of a wide range of interesting technological applications. One example already widespread is the use of an oxygen-
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Chun, Ja-Kyu, and Han-Ill Yoo. "Electric-Field Induced Degradation of Ionic Solids." Journal of the Korean Ceramic Society 49, no. 1 (2012): 48–55. http://dx.doi.org/10.4191/kcers.2012.49.1.048.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Maier, Joachim. "BuildingversusStructure Elements: Ionic Charge Carriers in Solids." Zeitschrift für Physikalische Chemie 226, no. 9-10 (2012): 863–70. http://dx.doi.org/10.1524/zpch.2012.0317.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Hardy, J. R. "Structural phase transitions in ionic molecular solids." Acta Crystallographica Section A Foundations of Crystallography 52, a1 (1996): C441. http://dx.doi.org/10.1107/s0108767396081858.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Harding, J. H. "Computer simulation of defects in ionic solids." Reports on Progress in Physics 53, no. 11 (1990): 1403–66. http://dx.doi.org/10.1088/0034-4885/53/11/002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Salanne, Mathieu, and Paul A. Madden. "Polarization effects in ionic solids and melts." Molecular Physics 109, no. 19 (2011): 2299–315. http://dx.doi.org/10.1080/00268976.2011.617523.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Henn, F. "Dielectric relaxation in ionic solids: experimental evidences." Solid State Ionics 136-137, no. 1-2 (2000): 1335–43. http://dx.doi.org/10.1016/s0167-2738(00)00574-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Dieterich, Wolfgang, and Philipp Maass. "Non-Debye relaxations in disordered ionic solids." Chemical Physics 284, no. 1-2 (2002): 439–67. http://dx.doi.org/10.1016/s0301-0104(02)00673-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Harrison, Walter A. "Overlap interactions and bonding in ionic solids." Physical Review B 34, no. 4 (1986): 2787–93. http://dx.doi.org/10.1103/physrevb.34.2787.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Cyriac, Jobin, T. Pradeep, H. Kang, R. Souda, and R. G. Cooks. "Low-Energy Ionic Collisions at Molecular Solids." Chemical Reviews 112, no. 10 (2012): 5356–411. http://dx.doi.org/10.1021/cr200384k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Srivastava, S. K., S. K. Sharma та Pallavi Sinha. "Compression dependence of αKT for ionic solids". Journal of Physics and Chemistry of Solids 70, № 2 (2009): 255–60. http://dx.doi.org/10.1016/j.jpcs.2008.04.039.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Hardy, J. R. "Structural phase transitions in ionic molecular solids." Phase Transitions 67, no. 3 (1998): 521–37. http://dx.doi.org/10.1080/01411599808227667.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Krieger, Brenna M., Heather Y. Lee, Thomas J. Emge, James F. Wishart, and Edward W. Castner, Jr. "Ionic liquids and solids with paramagnetic anions." Physical Chemistry Chemical Physics 12, no. 31 (2010): 8919. http://dx.doi.org/10.1039/b920652n.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Harrison, Walter A. "Interatomic interactions in covalent and ionic solids." Physical Review B 41, no. 9 (1990): 6008–19. http://dx.doi.org/10.1103/physrevb.41.6008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

LIAW, B. Y. "ChemInform Abstract: Electrochemical Aspects of Ionic Solids." ChemInform 28, no. 29 (2010): no. http://dx.doi.org/10.1002/chin.199729253.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Herrmann, Reimer, Joachim Daub, Jürgen Förster, and Thomas Striebel. "Chemodynamics of Trace Pollutants during Roof and Street Runoff." Water Science and Technology 29, no. 1-2 (1994): 73–82. http://dx.doi.org/10.2166/wst.1994.0653.

Der volle Inhalt der Quelle
Annotation:
The fate of ionic and non-ionic organic compounds and trace metals during roof and street runoff is sensitive to their distribution between sorption onto roof and street material and suspended solids on one hand and the dissolved phase on the other hand. Using field data of runoff, suspended solids concentration and the chemical state of various trace pollutants, we try to explain the factors governing the chemodynamics and the transport behaviour during roof and street runoff.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Allen, Jan L., Bria A. Crear, Rishav Choudhury, et al. "Fast Li-Ion Conduction in Spinel-Structured Solids." Molecules 26, no. 9 (2021): 2625. http://dx.doi.org/10.3390/molecules26092625.

Der volle Inhalt der Quelle
Annotation:
Spinel-structured solids were studied to understand if fast Li+ ion conduction can be achieved with Li occupying multiple crystallographic sites of the structure to form a “Li-stuffed” spinel, and if the concept is applicable to prepare a high mixed electronic-ionic conductive, electrochemically active solid solution of the Li+ stuffed spinel with spinel-structured Li-ion battery electrodes. This could enable a single-phase fully solid electrode eliminating multi-phase interface incompatibility and impedance commonly observed in multi-phase solid electrolyte–cathode composites. Materials of co
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Uchida, Sayaka. "Frontiers and progress in cation-uptake and exchange chemistry of polyoxometalate-based compounds." Chemical Science 10, no. 33 (2019): 7670–79. http://dx.doi.org/10.1039/c9sc02823d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Huang, C. P., and J. M. Wang. "Factors affecting the distribution of heavy metals in wastewater treatment processes: role of sludge particulate." Water Science and Technology 44, no. 10 (2001): 47–52. http://dx.doi.org/10.2166/wst.2001.0577.

Der volle Inhalt der Quelle
Annotation:
The distribution of heavy metals, namely, Ag(I), Cd(II), Co(II), Cr(III,VI), Cu(II), Hg(II), Ni(II), Pb(II), and Zn(II) in 4 municipal wastewater treatment plants was evaluated as a function of several parameters including pH, COD, ionic strength and SS. Although there are variations in pH, alkalinity, COD and ionic strength, the results show that wastewater samples containing less than 5 g/L suspended solids concentration have similar characteristics. Correlations among heavy metal distribution (as the ratio between dissolved to total metals) and wastewater characteristics were attempted. Cor
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Lucco-Borlera, M., D. Mazza, L. Montanaro, A. Negro, and S. Ronchetti. "X-ray characterization of the new nasicon compositions Na3Zr2−x/4Si2−xP1+xO12 with x=0.333, 0.667, 1.000, 1.333, 1.667." Powder Diffraction 12, no. 3 (1997): 171–74. http://dx.doi.org/10.1017/s0885715600009660.

Der volle Inhalt der Quelle
Annotation:
It is known that solids with composition Na3Zr2Si2PO12 heated at 1200 °C crystallize in the nasicon structure. This material shows a high ionic conductivity that represents an interesting improvement in the field of solid electrolytes. Our experimental results allow to establish for the first time that nasicon structures are stable along the compositional join Na3Zr2−x/4Si2−xP1+xO12 with x extending from 0 to 1.667. These structures are characterized by a Zr underoccupation of octahedral sites and a constant number of Na+ ions. This fact envisages a possible application of these materials in t
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Podgorbunsky, Anatoly B., Sergey Sinebryukhov, and Sergey Gnedenkov. "High Anionic Conductivity of Solids with Different Structure." Solid State Phenomena 213 (March 2014): 200–203. http://dx.doi.org/10.4028/www.scientific.net/ssp.213.200.

Der volle Inhalt der Quelle
Annotation:
Impedance spectroscopy data for a several materials with high ionic conductivity at the intermediate temperature range (296-473 K) were obtained and analyzed. Investigated systems including pure CsSb2F7, KSb2F7, related solid solutions Cs(1-x)KxSb2F7 (0.1≤x≤0.65) and some ionic materials with fluorite structure PbF2-BiF3-K[Na]F were studied. The values of the dc conductivity and activation energies are estimated from the analysis of the conductivity spectra. The role of cation substitution influencing on conductivity values, phase transitions and activation energies in the given systems have b
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Liu, Zhantao, Jue Liu, Yifei Mo, and Hailong Chen. "Design of High-Performance Solid Electrolytes Guided By Crystal Structure Characterization and Understanding." ECS Meeting Abstracts MA2022-02, no. 3 (2022): 225. http://dx.doi.org/10.1149/ma2022-023225mtgabs.

Der volle Inhalt der Quelle
Annotation:
Solid electrolyte is the key component in all-solid-state-batteries that is currently limiting the commercialization of this technology. An ideal solid electrolyte should have high room temperature ionic conductivity, low electronic conductivity, good compatibility with both cathode and anode, good mechanical properties, high air and moisture stability and low manufacture cost. Among these requirements, the improvement of ionic conductivity is prioritized as the conductivity of most existing solid electrolyte is still much lower than that of conventional liquid electrolyte. The improvement of
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!