Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „IPSC-Derived neural models“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "IPSC-Derived neural models" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "IPSC-Derived neural models"
Amalakanti, *Sridhar, Vijaya Chandra Reddy Avula und Sachin Singh. „SYSTEMATIC REVIEW OF INDUCED PLURIPOTENT STEM CELL THERAPY IN TRAUMATIC BRAIN INJURY“. International Journal of Neuropsychopharmacology 28, Supplement_1 (Februar 2025): i364—i365. https://doi.org/10.1093/ijnp/pyae059.649.
Der volle Inhalt der QuelleYang, Guang, Hyenjong Hong, April Torres, Kristen Malloy, Gourav Choudhury, Jeffrey Kim und Marcel Daadi. „Standards for Deriving Nonhuman Primate-Induced Pluripotent Stem Cells, Neural Stem Cells and Dopaminergic Lineage“. International Journal of Molecular Sciences 19, Nr. 9 (17.09.2018): 2788. http://dx.doi.org/10.3390/ijms19092788.
Der volle Inhalt der QuelleSupakul, Sopak, Chisato Oyama, Yuki Hatakeyama, Sumihiro Maeda und Hideyuki Okano. „Estradiol enhanced neuronal plasticity and ameliorated astrogliosis in human iPSC-derived neural models“. Regenerative Therapy 25 (März 2024): 250–63. http://dx.doi.org/10.1016/j.reth.2023.12.018.
Der volle Inhalt der QuelleLiu, Sijun, Yuying Zhao, Xiaoying Su, Chengcheng Zhou, Peifen Yang, Qiusan Lin, Shijun Li et al. „Reconstruction of Alzheimer’s Disease Cell Model In Vitro via Extracted Peripheral Blood Molecular Cells from a Sporadic Patient“. Stem Cells International 2020 (18.12.2020): 1–10. http://dx.doi.org/10.1155/2020/8897494.
Der volle Inhalt der QuelleBarak, Martin, Veronika Fedorova, Veronika Pospisilova, Jan Raska, Simona Vochyanova, Jiri Sedmik, Hana Hribkova, Hana Klimova, Tereza Vanova und Dasa Bohaciakova. „Human iPSC-Derived Neural Models for Studying Alzheimer’s Disease: from Neural Stem Cells to Cerebral Organoids“. Stem Cell Reviews and Reports 18, Nr. 2 (Februar 2022): 792–820. http://dx.doi.org/10.1007/s12015-021-10254-3.
Der volle Inhalt der QuelleCostamagna, Gianluca, Giacomo Pietro Comi und Stefania Corti. „Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids“. International Journal of Molecular Sciences 22, Nr. 5 (06.03.2021): 2659. http://dx.doi.org/10.3390/ijms22052659.
Der volle Inhalt der QuelleHunt, Jack F. V., Meng Li, Ryan Risgaard, Gene E. Ananiev, Scott Wildman, Fan Zhang, Tim S. Bugni, Xinyu Zhao und Anita Bhattacharyya. „High Throughput Small Molecule Screen for Reactivation of FMR1 in Fragile X Syndrome Human Neural Cells“. Cells 11, Nr. 1 (27.12.2021): 69. http://dx.doi.org/10.3390/cells11010069.
Der volle Inhalt der QuelleCsöbönyeiová, Mária, Štefan Polák und L’uboš Danišovič. „Toxicity testing and drug screening using iPSC-derived hepatocytes, cardiomyocytes, and neural cells“. Canadian Journal of Physiology and Pharmacology 94, Nr. 7 (Juli 2016): 687–94. http://dx.doi.org/10.1139/cjpp-2015-0459.
Der volle Inhalt der QuelleFernández-Santiago, Rubén, und Mario Ezquerra. „Epigenetic Research of Neurodegenerative Disorders Using Patient iPSC-Based Models“. Stem Cells International 2016 (2016): 1–16. http://dx.doi.org/10.1155/2016/9464591.
Der volle Inhalt der QuelleTamura, Ryota, Masahiro Yo, Hiroyuki Miyoshi, Oltea Sampetrean, Hideyuki Saya, Hideyuki Okano und Masahiro Toda. „ET-1 STEM CELL-BASED GENE THERAPY FOR MALIGNANT GLIOMA USING GENOME-EDITED HUMAN INDUCED PLURIPOTENT STEM CELLS“. Neuro-Oncology Advances 4, Supplement_3 (01.12.2022): iii4—iii5. http://dx.doi.org/10.1093/noajnl/vdac167.015.
Der volle Inhalt der QuelleDissertationen zum Thema "IPSC-Derived neural models"
Chaput, Carole. „Therapeutic functionalization of a rare neurodevelopmental and monogenic disease model based on the contribution of the HSF2 stress pathway“. Electronic Thesis or Diss., Université Paris Cité, 2024. http://www.theses.fr/2024UNIP5190.
Der volle Inhalt der QuelleNeurodevelopmental disorders (NDD) affect around 10% of children and are a major source of lifelong disability. Characterised by defective brain development and great variability in the clinical picture of patients, which compromises diagnosis and the emergence of therapeutic solutions, they represent a significant human, societal and economic cost. The aim of this project is to gain a better understanding of a common feature of NDDs - the deregulation of stress response pathways - which could provide a readout to understanding these pathologies. The integration of processes triggered by stress is governed by heat shock transcription factors (HSFs), which are strongly deregulated in several NDDs. This has two consequences: an altered stress response in neural cells leading to defects in brain development. We have helped to show that these HSFs are essential for proper brain development. More specifically, the team demonstrated that HSF2 plays a key role in regulating the proliferation of progenitor cells and neuronal migration in the cortex by modulating the expression of genes involved in cell adhesion. Pharmacological modulation of this pathway could therefore offer new therapeutic possibilities. In a first study, the mechanisms underlying HSF deregulation were investigated in cells from patients with Rubinstein-Taybi syndrome (RSTS), a rare genetic NDD caused by mutations in the CREBBP or EP300 genes. Our study showed a decrease in HSF2 protein levels in fibroblasts and in neural models (2D and 3D) derived from induced pluripotent stem cells (iPSCs) from RSTS patients. This decrease in HSF2 protein levels resulted from a defect in acetylation by CBP or EP300, leading to ubiquitination and degradation by the proteasome. As a result, RSTS cells showed an altered stress response and reduced expression of genes essential for neural development, in particular N-cadherin. Restoration of HSF2 levels, either by proteasome inhibition or by acetylation-mimicking mutations, restored both the stress response and the expression of neurodevelopmental genes. We found that disruption of the CBP/EP300-HSF2-N-cadherin pathway is recapitulated in RSTS neural models, which display proliferation abnormalities linked to altered cell-cell adhesion, particularly in the N-cadherin pathway. On the basis of these results and in collaboration with Ksilink, my CIFRE thesis project aims to develop a cellular model of NDD based on RSTS patients. This model will enable us to explore how perturbations in the HSF pathway could contribute to various NDDs. To achieve this objective, I first generated an HSF2 mutant that mimics the acetylated form of the protein in iPSCs derived from RSTS patient fibroblasts. Using this isogenic model as a reference, I developed and validated a two-dimensional neural culture model and identified new HSF2-dependent targets and phenotypes using a multiparametric approach ranging from high-throughput transcriptomics to cell morphological analyses. This approach made it possible to identify the pro-neuronal factor, ASCL1, and a morphological phenotype, rosette formation, as key readouts for analysis by high-content imaging. On the basis of these two phenotypes, I used the neural model to screen a selection of molecules with therapeutic potential using high-content imaging. This work will pave the way for new therapeutic approaches aimed at modulating stress response pathways, thereby opening up new possibilities for the treatment of NDD
Bücher zum Thema "IPSC-Derived neural models"
Wainger, Brian J. Amyotrophic Lateral Sclerosis. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199937837.003.0028.
Der volle Inhalt der QuelleBuchteile zum Thema "IPSC-Derived neural models"
Singstad, Bjørn Jostein, Bendik Steinsvåg Dalen, Sandhya Sihra, Nickolas Forsch und Samuel Wall. „Identifying Ionic Channel Block in a Virtual Cardiomyocyte Population Using Machine Learning Classifiers“. In Computational Physiology, 91–109. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05164-7_8.
Der volle Inhalt der QuellePré, Deborah, Alexander T. Wooten, Haowen Zhou, Ashley Neil und Anne G. Bang. „Assaying Chemical Long-Term Potentiation in Human iPSC-Derived Neuronal Networks“. In Stem Cell-Based Neural Model Systems for Brain Disorders, 275–89. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3287-1_22.
Der volle Inhalt der QuelleLomoio, Selene, und Giuseppina Tesco. „A 3D Bioengineered Neural Tissue Model Generated from Human iPSC-Derived Neural Precursor Cells“. In Stem Cell-Based Neural Model Systems for Brain Disorders, 185–92. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3287-1_14.
Der volle Inhalt der QuelleTukker, Anke M., Fiona M. J. Wijnolts, Aart de Groot, Richard W. Wubbolts und Remco H. S. Westerink. „In Vitro Techniques for Assessing Neurotoxicity Using Human iPSC-Derived Neuronal Models“. In Neuromethods, 17–35. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9228-7_2.
Der volle Inhalt der QuelleVulakh, Gabriella, und Xin Yang. „Characterizing the Neuron-Glial Interactions by the Co-cultures of Human iPSC-Derived Oligodendroglia and Neurons“. In Stem Cell-Based Neural Model Systems for Brain Disorders, 103–11. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3287-1_9.
Der volle Inhalt der QuelleO’Rourke, Ryan, Guzide Ayse Erdemir und Yu-Wen Alvin Huang. „Assays of Monitoring and Measuring Autophagic Flux for iPSC-Derived Human Neurons and Other Brain Cell Types“. In Stem Cell-Based Neural Model Systems for Brain Disorders, 221–33. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3287-1_18.
Der volle Inhalt der QuelleConnolly, Kevin, Mikael Lehoux, Benedetta Assetta und Yu-Wen Alvin Huang. „Modeling Cellular Crosstalk of Neuroinflammation Axis by Tri-cultures of iPSC-Derived Human Microglia, Astrocytes, and Neurons“. In Stem Cell-Based Neural Model Systems for Brain Disorders, 79–87. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3287-1_7.
Der volle Inhalt der QuelleVarela, Maria C., Ranmal Samarasinghe und Jack M. Parent. „Functional Exploration of Epilepsy Genes in Patient-Derived Cells“. In Jasper's Basic Mechanisms of the Epilepsies, herausgegeben von Jeffrey L. Noebels, 841–60. 5. Aufl. Oxford University PressNew York, 2024. http://dx.doi.org/10.1093/med/9780197549469.003.0042.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "IPSC-Derived neural models"
Pitta, Marina Galdino da Rocha, Jordy Silva de Carvalho, Luzilene Pereira de Lima und Ivan da Rocha Pitta. „iPSC therapies applied to rehabilitation in parkinson’s disease“. In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.022.
Der volle Inhalt der QuelleRavagnani, Felipe, Hellen Valerio, Jersey Maués, Arthur de Oliveira, Renato Puga, Karina Oliveira, Fabíola Picosse et al. „Omics profile of iPSC-derived astrocytes from Progressive Supranuclear Palsy (PSP) patients“. In XIV Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2023. http://dx.doi.org/10.5327/1516-3180.141s1.414.
Der volle Inhalt der Quelle