Zeitschriftenartikel zum Thema „IPSC-Derived neural models“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "IPSC-Derived neural models" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Amalakanti, *Sridhar, Vijaya Chandra Reddy Avula und Sachin Singh. „SYSTEMATIC REVIEW OF INDUCED PLURIPOTENT STEM CELL THERAPY IN TRAUMATIC BRAIN INJURY“. International Journal of Neuropsychopharmacology 28, Supplement_1 (Februar 2025): i364—i365. https://doi.org/10.1093/ijnp/pyae059.649.
Der volle Inhalt der QuelleYang, Guang, Hyenjong Hong, April Torres, Kristen Malloy, Gourav Choudhury, Jeffrey Kim und Marcel Daadi. „Standards for Deriving Nonhuman Primate-Induced Pluripotent Stem Cells, Neural Stem Cells and Dopaminergic Lineage“. International Journal of Molecular Sciences 19, Nr. 9 (17.09.2018): 2788. http://dx.doi.org/10.3390/ijms19092788.
Der volle Inhalt der QuelleSupakul, Sopak, Chisato Oyama, Yuki Hatakeyama, Sumihiro Maeda und Hideyuki Okano. „Estradiol enhanced neuronal plasticity and ameliorated astrogliosis in human iPSC-derived neural models“. Regenerative Therapy 25 (März 2024): 250–63. http://dx.doi.org/10.1016/j.reth.2023.12.018.
Der volle Inhalt der QuelleLiu, Sijun, Yuying Zhao, Xiaoying Su, Chengcheng Zhou, Peifen Yang, Qiusan Lin, Shijun Li et al. „Reconstruction of Alzheimer’s Disease Cell Model In Vitro via Extracted Peripheral Blood Molecular Cells from a Sporadic Patient“. Stem Cells International 2020 (18.12.2020): 1–10. http://dx.doi.org/10.1155/2020/8897494.
Der volle Inhalt der QuelleBarak, Martin, Veronika Fedorova, Veronika Pospisilova, Jan Raska, Simona Vochyanova, Jiri Sedmik, Hana Hribkova, Hana Klimova, Tereza Vanova und Dasa Bohaciakova. „Human iPSC-Derived Neural Models for Studying Alzheimer’s Disease: from Neural Stem Cells to Cerebral Organoids“. Stem Cell Reviews and Reports 18, Nr. 2 (Februar 2022): 792–820. http://dx.doi.org/10.1007/s12015-021-10254-3.
Der volle Inhalt der QuelleCostamagna, Gianluca, Giacomo Pietro Comi und Stefania Corti. „Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids“. International Journal of Molecular Sciences 22, Nr. 5 (06.03.2021): 2659. http://dx.doi.org/10.3390/ijms22052659.
Der volle Inhalt der QuelleHunt, Jack F. V., Meng Li, Ryan Risgaard, Gene E. Ananiev, Scott Wildman, Fan Zhang, Tim S. Bugni, Xinyu Zhao und Anita Bhattacharyya. „High Throughput Small Molecule Screen for Reactivation of FMR1 in Fragile X Syndrome Human Neural Cells“. Cells 11, Nr. 1 (27.12.2021): 69. http://dx.doi.org/10.3390/cells11010069.
Der volle Inhalt der QuelleCsöbönyeiová, Mária, Štefan Polák und L’uboš Danišovič. „Toxicity testing and drug screening using iPSC-derived hepatocytes, cardiomyocytes, and neural cells“. Canadian Journal of Physiology and Pharmacology 94, Nr. 7 (Juli 2016): 687–94. http://dx.doi.org/10.1139/cjpp-2015-0459.
Der volle Inhalt der QuelleFernández-Santiago, Rubén, und Mario Ezquerra. „Epigenetic Research of Neurodegenerative Disorders Using Patient iPSC-Based Models“. Stem Cells International 2016 (2016): 1–16. http://dx.doi.org/10.1155/2016/9464591.
Der volle Inhalt der QuelleTamura, Ryota, Masahiro Yo, Hiroyuki Miyoshi, Oltea Sampetrean, Hideyuki Saya, Hideyuki Okano und Masahiro Toda. „ET-1 STEM CELL-BASED GENE THERAPY FOR MALIGNANT GLIOMA USING GENOME-EDITED HUMAN INDUCED PLURIPOTENT STEM CELLS“. Neuro-Oncology Advances 4, Supplement_3 (01.12.2022): iii4—iii5. http://dx.doi.org/10.1093/noajnl/vdac167.015.
Der volle Inhalt der QuelleTamura, Ryota, Masahiro Yo, Ryotaro Imai, Hideyuki Okano und Masahiro Toda. „10000-SPE-1 STEM CELL-BASED GENE THERAPY FOR MALIGNANT GLIOMA USING GENOME-EDITED HUMAN INDUCED PLURIPOTENT STEM CELLS“. Neuro-Oncology Advances 5, Supplement_5 (01.12.2023): v1. http://dx.doi.org/10.1093/noajnl/vdad141.002.
Der volle Inhalt der QuelleKiaee, Kiavash, Yasamin A. Jodat, Nicole J. Bassous, Navneet Matharu und Su Ryon Shin. „Transcriptomic Mapping of Neural Diversity, Differentiation and Functional Trajectory in iPSC-Derived 3D Brain Organoid Models“. Cells 10, Nr. 12 (05.12.2021): 3422. http://dx.doi.org/10.3390/cells10123422.
Der volle Inhalt der QuelleMalankhanova, Tuyana, Lyubov Suldina, Elena Grigor’eva, Sergey Medvedev, Julia Minina, Ksenia Morozova, Elena Kiseleva, Suren Zakian und Anastasia Malakhova. „A Human Induced Pluripotent Stem Cell-Derived Isogenic Model of Huntington’s Disease Based on Neuronal Cells Has Several Relevant Phenotypic Abnormalities“. Journal of Personalized Medicine 10, Nr. 4 (09.11.2020): 215. http://dx.doi.org/10.3390/jpm10040215.
Der volle Inhalt der QuelleMariani, Alessandro, Davide Comolli, Roberto Fanelli, Gianluigi Forloni und Massimiliano De Paola. „Neonicotinoid Pesticides Affect Developing Neurons in Experimental Mouse Models and in Human Induced Pluripotent Stem Cell (iPSC)-Derived Neural Cultures and Organoids“. Cells 13, Nr. 15 (31.07.2024): 1295. http://dx.doi.org/10.3390/cells13151295.
Der volle Inhalt der QuelleBombieri, Cristina, Andrea Corsi, Elisabetta Trabetti, Alessandra Ruggiero, Giulia Marchetto, Gaetano Vattemi, Maria Teresa Valenti, Donato Zipeto und Maria Grazia Romanelli. „Advanced Cellular Models for Rare Disease Study: Exploring Neural, Muscle and Skeletal Organoids“. International Journal of Molecular Sciences 25, Nr. 2 (13.01.2024): 1014. http://dx.doi.org/10.3390/ijms25021014.
Der volle Inhalt der QuellePark, Soomin, und Jong-Chan Park. „Advancements in brain organoid models for neurodegenerative disease research“. Organoid 4 (25.12.2024): e12. https://doi.org/10.51335/organoid.2024.4.e12.
Der volle Inhalt der QuelleZhao, Wen-Ning, Chialin Cheng, Kraig M. Theriault, Steven D. Sheridan, Li-Huei Tsai und Stephen J. Haggarty. „A High-Throughput Screen for Wnt/β-Catenin Signaling Pathway Modulators in Human iPSC-Derived Neural Progenitors“. Journal of Biomolecular Screening 17, Nr. 9 (24.08.2012): 1252–63. http://dx.doi.org/10.1177/1087057112456876.
Der volle Inhalt der QuelleTsang, Victoria, Davide Danovi und Ivo Lieberam. „MODL-09. MODELLING MIGRATION OF GLIOBLASTOMA PATIENT-DERIVED CELLS USING HUMAN IPSC-DERIVED NEURAL SPHEROID AND HIGH CONTENT IMAGING“. Neuro-Oncology 24, Supplement_7 (01.11.2022): vii292. http://dx.doi.org/10.1093/neuonc/noac209.1137.
Der volle Inhalt der QuelleGalera-Monge, Teresa, Francisco Zurita-Díaz, Isaac Canals, Marita Grønning Hansen, Laura Rufián-Vázquez, Johannes K. Ehinger, Eskil Elmér et al. „Mitochondrial Dysfunction and Calcium Dysregulation in Leigh Syndrome Induced Pluripotent Stem Cell Derived Neurons“. International Journal of Molecular Sciences 21, Nr. 9 (30.04.2020): 3191. http://dx.doi.org/10.3390/ijms21093191.
Der volle Inhalt der QuelleCastellanos-Montiel, María José, Mathilde Chaineau, Anna Kristyna Franco-Flores, Ghazal Haghi, Dulce Carrillo-Valenzuela, Wolfgang E. Reintsch, Carol X. Q. Chen und Thomas M. Durcan. „An Optimized Workflow to Generate and Characterize iPSC-Derived Motor Neuron (MN) Spheroids“. Cells 12, Nr. 4 (08.02.2023): 545. http://dx.doi.org/10.3390/cells12040545.
Der volle Inhalt der QuelleTsang, V. S., I. Lieberam und D. Danovi. „P17.03.B Modelling migration of glioblastoma patient-derived cells using human iPSC-derived neural spheroid and high content analysis“. Neuro-Oncology 24, Supplement_2 (01.09.2022): ii89. http://dx.doi.org/10.1093/neuonc/noac174.311.
Der volle Inhalt der QuelleNayak, Ritu, Idan Rosh, Irina Kustanovich und Shani Stern. „Mood Stabilizers in Psychiatric Disorders and Mechanisms Learnt from In Vitro Model Systems“. International Journal of Molecular Sciences 22, Nr. 17 (27.08.2021): 9315. http://dx.doi.org/10.3390/ijms22179315.
Der volle Inhalt der QuelleMansur, Fernanda, André Luiz Teles e Silva, Ana Karolyne Santos Gomes, Juliana Magdalon, Janaina Sena de Souza, Karina Griesi-Oliveira, Maria Rita Passos-Bueno und Andréa Laurato Sertié. „Complement C4 Is Reduced in iPSC-Derived Astrocytes of Autism Spectrum Disorder Subjects“. International Journal of Molecular Sciences 22, Nr. 14 (15.07.2021): 7579. http://dx.doi.org/10.3390/ijms22147579.
Der volle Inhalt der QuelleMaussion, Gilles, Cecilia Rocha, Narges Abdian, Dimitri Yang, Julien Turk, Dulce Carrillo Valenzuela, Luisa Pimentel et al. „Transcriptional Dysregulation and Impaired Neuronal Activity in FMR1 Knock-Out and Fragile X Patients’ iPSC-Derived Models“. International Journal of Molecular Sciences 24, Nr. 19 (05.10.2023): 14926. http://dx.doi.org/10.3390/ijms241914926.
Der volle Inhalt der QuelleCostamagna, Gianluca, Luca Andreoli, Stefania Corti und Irene Faravelli. „iPSCs-Based Neural 3D Systems: A Multidimensional Approach for Disease Modeling and Drug Discovery“. Cells 8, Nr. 11 (14.11.2019): 1438. http://dx.doi.org/10.3390/cells8111438.
Der volle Inhalt der QuelleNg, Neville S., Simon Maksour, Jeremy S. Lum, Michelle Newbery, Victoria Shephard und Lezanne Ooi. „An Optimized Direct Lysis Gene Expression Microplate Assay and Applications for Disease, Differentiation, and Pharmacological Cell-Based Studies“. Biosensors 12, Nr. 6 (26.05.2022): 364. http://dx.doi.org/10.3390/bios12060364.
Der volle Inhalt der QuelleBuijsen, Ronald A. M., Linda M. van der Graaf, Elsa C. Kuijper, Barry A. Pepers, Elena Daoutsali, Lotte Weel, Vered Raz, David A. Parfitt und Willeke M. C. van Roon-Mom. „Calcium-Enhanced Medium-Based Delivery of Splice Modulating Antisense Oligonucleotides in 2D and 3D hiPSC-Derived Neuronal Models“. Biomedicines 12, Nr. 9 (23.08.2024): 1933. http://dx.doi.org/10.3390/biomedicines12091933.
Der volle Inhalt der QuelleDeshmukh, Rahul S., Krisztián A. Kovács und András Dinnyés. „Drug Discovery Models and Toxicity Testing Using Embryonic and Induced Pluripotent Stem-Cell-Derived Cardiac and Neuronal Cells“. Stem Cells International 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/379569.
Der volle Inhalt der QuelleSong, Liqing, Yuanwei Yan, Mark Marzano und Yan Li. „Studying Heterotypic Cell–Cell Interactions in the Human Brain Using Pluripotent Stem Cell Models for Neurodegeneration“. Cells 8, Nr. 4 (01.04.2019): 299. http://dx.doi.org/10.3390/cells8040299.
Der volle Inhalt der QuelleStebbins, Matthew J., Benjamin D. Gastfriend, Scott G. Canfield, Ming-Song Lee, Drew Richards, Madeline G. Faubion, Wan-Ju Li, Richard Daneman, Sean P. Palecek und Eric V. Shusta. „Human pluripotent stem cell–derived brain pericyte–like cells induce blood-brain barrier properties“. Science Advances 5, Nr. 3 (März 2019): eaau7375. http://dx.doi.org/10.1126/sciadv.aau7375.
Der volle Inhalt der QuelleSkinner, Kasey, Tomoyuki Koga, Shunichiro Miki, Robert F. Gruener, R. Stephanie Huang, Frank Furnari und C. Ryan Miller. „HGG-12. HUMAN IPSC-DERIVED H3.3K27M NEUROSPHERES: A NOVEL MODEL FOR INVESTIGATING DIPG PATHOGENESIS AND DRUG RESPONSE“. Neuro-Oncology 23, Supplement_1 (01.06.2021): i19—i20. http://dx.doi.org/10.1093/neuonc/noab090.078.
Der volle Inhalt der QuelleManz, Frederik, Daniel Haag, Stefan M. Pfister und Lena Kutscher. „MEDB-22. iPSC-derived cerebellar organoid model for hereditary genetic predisposition in SHH-medulloblastoma“. Neuro-Oncology 24, Supplement_1 (01.06.2022): i109. http://dx.doi.org/10.1093/neuonc/noac079.396.
Der volle Inhalt der QuelleCsobonyeiova, Maria, Stefan Polak und Lubos Danisovic. „Recent Overview of the Use of iPSCs Huntington’s Disease Modeling and Therapy“. International Journal of Molecular Sciences 21, Nr. 6 (24.03.2020): 2239. http://dx.doi.org/10.3390/ijms21062239.
Der volle Inhalt der QuelleMcIntyre, Laura Lynn, Warren Plaisted, Ronald Coleman, Jeanne Loring, Thomas Lane und Craig M. Walsh. „Evaluating the Therapeutic Potential of Transplantation of Neural Precursor Cells for Treating the Autoimmune Disease Multiple Sclerosis“. Journal of Immunology 198, Nr. 1_Supplement (01.05.2017): 219.1. http://dx.doi.org/10.4049/jimmunol.198.supp.219.1.
Der volle Inhalt der QuelleNizzardo, Monica, Monica Bucchia, Agnese Ramirez, Elena Trombetta, Nereo Bresolin, Giacomo P. Comi und Stefania Corti. „iPSC-derived LewisX+CXCR4+β1-integrin+ neural stem cells improve the amyotrophic lateral sclerosis phenotype by preserving motor neurons and muscle innervation in human and rodent models“. Human Molecular Genetics 25, Nr. 15 (06.06.2016): 3152–63. http://dx.doi.org/10.1093/hmg/ddw163.
Der volle Inhalt der QuelleJohnston, *Jenessa, Brandi Quintanilla, Peixiong Yuan, Shiyong Peng, Mani Yavi, Hector Caruncho, Bashkim Kadriu und Carlos Zarate Jr. „DIFFERENCE IN TREATMENT-RESPONSE OF IPSC-DERIVED NEURONS TO REELIN AND (2R,6R)-HNK FROM PARTICIPANTS WITH TREATMENT- RESISTANT DEPRESSION“. International Journal of Neuropsychopharmacology 28, Supplement_1 (Februar 2025): i327. https://doi.org/10.1093/ijnp/pyae059.583.
Der volle Inhalt der QuelleFrawley, Lauren, Noam Tomer Taylor, Olivia Sivills, Ella McPhillamy, Timothy Duy To, Yibo Wu, Beek Yoke Chin und Chiew Yen Wong. „Stem Cell Therapy for the Treatment of Amyotrophic Lateral Sclerosis: Comparison of the Efficacy of Mesenchymal Stem Cells, Neural Stem Cells, and Induced Pluripotent Stem Cells“. Biomedicines 13, Nr. 1 (27.12.2024): 35. https://doi.org/10.3390/biomedicines13010035.
Der volle Inhalt der QuelleDe Beuckeleer, Sarah, Tim Van De Looverbosch, Johanna Van Den Daele, Peter Ponsaerts und Winnok H. De Vos. „Unbiased identification of cell identity in dense mixed neural cultures“. eLife 13 (17.01.2025). https://doi.org/10.7554/elife.95273.4.
Der volle Inhalt der QuelleSarieva, Kseniia, Felix Hildebrand, Theresa Kagermeier, Zeynep Yentür, Katharina Becker und Simone Mayer. „Pluripotent stem cell-derived neural progenitor cells can be used to model effects of IL-6 on human neurodevelopment“. Disease Models & Mechanisms 16, Nr. 11 (01.11.2023). http://dx.doi.org/10.1242/dmm.050306.
Der volle Inhalt der QuelleTomov, Martin L., Alison O’Neil, Hamdah S. Abbasi, Beth A. Cimini, Anne E. Carpenter, Lee L. Rubin und Mark Bathe. „Resolving cell state in iPSC-derived human neural samples with multiplexed fluorescence imaging“. Communications Biology 4, Nr. 1 (24.06.2021). http://dx.doi.org/10.1038/s42003-021-02276-x.
Der volle Inhalt der QuelleStöberl, Nina, Emily Maguire, Elisa Salis, Bethany Shaw und Hazel Hall-Roberts. „Human iPSC-derived glia models for the study of neuroinflammation“. Journal of Neuroinflammation 20, Nr. 1 (10.10.2023). http://dx.doi.org/10.1186/s12974-023-02919-2.
Der volle Inhalt der QuelleKhan, Mushfiquddin, Tajinder S. Dhammu, Mauhamad Baarine, Avtar K. Singh und Inderjit Singh. „Abstract WP113: Induced Pluripotent Stem Cells Derived Neurons Ideally Serve as a Human Stroke Model of Neuronal Damage and Neuroprotective Intervention“. Stroke 48, suppl_1 (Februar 2017). http://dx.doi.org/10.1161/str.48.suppl_1.wp113.
Der volle Inhalt der QuelleBertucci, Taylor, Kathryn Bowles, Steven Lotz, Le Qi, Katherine Stevens, Susan K. Goderie, Susan Borden et al. „Human iPSC derived organoid models to study tau pathology“. Alzheimer's & Dementia 20, S6 (Dezember 2024). https://doi.org/10.1002/alz.087353.
Der volle Inhalt der QuelleRylaarsdam, Lauren, Jennifer Rakotomamonjy, Eleanor Pope und Alicia Guemez-Gamboa. „iPSC-derived models of PACS1 syndrome reveal transcriptional and functional deficits in neuron activity“. Nature Communications 15, Nr. 1 (27.01.2024). http://dx.doi.org/10.1038/s41467-024-44989-7.
Der volle Inhalt der QuelleSheu, Chia-Lin, Ullas Mony, Sihan Dai, Linhui Qiu und Vishnu Priya Veeraraghavan. „Advances in iPSC Technology in Neural Disease Modeling, Drug Screening, and Therapy“. Current Stem Cell Research & Therapy 18 (08.06.2023). http://dx.doi.org/10.2174/1574888x18666230608105703.
Der volle Inhalt der QuelleSpathopoulou, Angeliki, Frank Edenhofer und Lisa Fellner. „Targeting α-Synuclein in Parkinson's Disease by Induced Pluripotent Stem Cell Models“. Frontiers in Neurology 12 (25.01.2022). http://dx.doi.org/10.3389/fneur.2021.786835.
Der volle Inhalt der QuellePedroza, Albert J., Samantha Churovich, Nobu Yokoyama, Ken Nakamura, Cristiana Iosef Husted und Michael P. Fischbein. „Abstract 14908: Anatomic Validation of Induced Pluripotent Stem Cell-derived Aortic Smooth Muscle Cell Model of Loeys Dietz Syndrome“. Circulation 142, Suppl_3 (17.11.2020). http://dx.doi.org/10.1161/circ.142.suppl_3.14908.
Der volle Inhalt der QuelleGorgogietas, Vyron, Bahareh Rajaei, Chae Heeyoung, Bruno J. Santacreu, Sandra Marín-Cañas, Paraskevi Salpea, Toshiaki Sawatani et al. „GLP-1R agonists demonstrate potential to treat Wolfram syndrome in human preclinical models“. Diabetologia, 30.03.2023. http://dx.doi.org/10.1007/s00125-023-05905-8.
Der volle Inhalt der QuelleRoth, Julien G., Kristin L. Muench, Aditya Asokan, Victoria M. Mallett, Hui Gai, Yogendra Verma, Stephen Weber et al. „16p11.2 microdeletion imparts transcriptional alterations in human iPSC-derived models of early neural development“. eLife 9 (10.11.2020). http://dx.doi.org/10.7554/elife.58178.
Der volle Inhalt der QuelleCheng, Chialin, Surya A. Reis, Emily T. Adams, Daniel M. Fass, Steven P. Angus, Timothy J. Stuhlmiller, Jared Richardson et al. „High-content image-based analysis and proteomic profiling identifies Tau phosphorylation inhibitors in a human iPSC-derived glutamatergic neuronal model of tauopathy“. Scientific Reports 11, Nr. 1 (23.08.2021). http://dx.doi.org/10.1038/s41598-021-96227-5.
Der volle Inhalt der Quelle