Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „K-theory of banach algebra“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "K-theory of banach algebra" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "K-theory of banach algebra"
PHILLIPS, N. CHRISTOPHER. „K-THEORY FOR FRÉCHET ALGEBRAS“. International Journal of Mathematics 02, Nr. 01 (Februar 1991): 77–129. http://dx.doi.org/10.1142/s0129167x91000077.
Der volle Inhalt der QuelleMartinez-Moreno, J., und A. Rodriguez-Palacios. „Imbedding elements whose numerical range has a vertex at zero in holomorphic semigroups“. Proceedings of the Edinburgh Mathematical Society 28, Nr. 1 (Februar 1985): 91–95. http://dx.doi.org/10.1017/s0013091500003229.
Der volle Inhalt der QuelleGourdeau, Frédéric. „Amenability of Banach algebras“. Mathematical Proceedings of the Cambridge Philosophical Society 105, Nr. 2 (März 1989): 351–55. http://dx.doi.org/10.1017/s0305004100067840.
Der volle Inhalt der QuelleHadwin, Don, und Mehmet Orhon. „A noncommutative theory of Bade functionals“. Glasgow Mathematical Journal 33, Nr. 1 (Januar 1991): 73–81. http://dx.doi.org/10.1017/s0017089500008053.
Der volle Inhalt der QuelleKubota, Yosuke. „Notes on twisted equivariant K-theory for C*-algebras“. International Journal of Mathematics 27, Nr. 06 (Juni 2016): 1650058. http://dx.doi.org/10.1142/s0129167x16500580.
Der volle Inhalt der QuelleFeeman, Timothy G. „The Bourgain algebra of a nest algebra“. Proceedings of the Edinburgh Mathematical Society 40, Nr. 1 (Februar 1997): 151–66. http://dx.doi.org/10.1017/s0013091500023518.
Der volle Inhalt der QuelleLudkovsky, S., und B. Diarra. „Spectral integration and spectral theory for non-Archimedean Banach spaces“. International Journal of Mathematics and Mathematical Sciences 31, Nr. 7 (2002): 421–42. http://dx.doi.org/10.1155/s016117120201150x.
Der volle Inhalt der QuelleNoreldeen, Alaa Hassan. „On the Homology Theory of Operator Algebras“. International Journal of Mathematics and Mathematical Sciences 2012 (2012): 1–13. http://dx.doi.org/10.1155/2012/368527.
Der volle Inhalt der QuellePfaffenberger, W. E., und J. Phillips. „Commutative Gelfand Theory for Real Banach Algebras: Representations as Sections of Bundles“. Canadian Journal of Mathematics 44, Nr. 2 (01.04.1992): 342–56. http://dx.doi.org/10.4153/cjm-1992-023-4.
Der volle Inhalt der QuelleRupp, R., und A. Sasane. „Reducibility in Aℝ(K), Cℝ(K), and A(K)“. Canadian Journal of Mathematics 62, Nr. 3 (01.06.2010): 646–67. http://dx.doi.org/10.4153/cjm-2010-025-9.
Der volle Inhalt der QuelleDissertationen zum Thema "K-theory of banach algebra"
Seidel, Markus. „On some Banach Algebra Tools in Operator Theory“. Doctoral thesis, Universitätsbibliothek Chemnitz, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-83750.
Der volle Inhalt der QuelleMendoza, Quispe Wilfredo. „K-teoría de C*-álgebras“. Master's thesis, Universidad Nacional Mayor de San Marcos, 2014. https://hdl.handle.net/20.500.12672/3780.
Der volle Inhalt der QuelleTesis
Knapper, Andrew. „Derivations on certain banach algebras“. Thesis, University of Birmingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368411.
Der volle Inhalt der QuelleZabroda, Olga Nikolaievna. „Generalized convolution operators and asymptotic spectral theory“. Doctoral thesis, Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200602061.
Der volle Inhalt der QuelleSeidel, Markus [Verfasser], Peter [Akademischer Betreuer] Junghanns, Peter [Gutachter] Junghanns, Bernd [Akademischer Betreuer] Silbermann und Vladimir S. [Gutachter] Rabinovich. „On some Banach Algebra Tools in Operator Theory / Markus Seidel ; Gutachter: Peter Junghanns, Vladimir S. Rabinovich ; Peter Junghanns, Bernd Silbermann“. Chemnitz : Universitätsbibliothek Chemnitz, 2012. http://d-nb.info/1214243320/34.
Der volle Inhalt der QuelleZarka, Benjamin. „La propriété de décroissance rapide hybride pour les groupes discrets“. Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4057.
Der volle Inhalt der QuelleA finitely generated group G has the property RD when the Sobolev space H^s(G) embeds in the group reduced C^*-algebra C^*_r(G). This embedding induces isomorphisms in K-theory, and allows to upper-bound the operator norm of the convolution on l^2(G) by weighted l^2 norms. It is known that if G contains an amenable subgroup with superpolynomial growth, then G cannot have property RD. In another hand, we always have the canonical inclusion of l^1(G) in C^*_r(G), but this estimation is generally less optimal than the estimation given by the property RD, and in most of cases, it needs to combine Bost and Baum-Connes conjectures to know if that inclusion induces K-theory isomorphisms. That's the reason why, in this thesis, we define a relative version of property RD by using an interpolation norm between l^1 and l^2 which depends on a subgroup H of G, and we call that property: property RD_H. We will see that property RD_H can be seen as an analogue for non-normal subgroups to the fact that G/H has property RD, and we will study what kind of geometric properties on G/H can imply or deny the property RD_H. In particular, we care about the case where H is a co-amenable subgroup of G, and the case where G is relatively hyperbolic with respect to H. We will show that property RD_H induces isomorphisms in K-theory, and gives us a lower bound concerning the return probability in the subgroup H for a symmetric random walk. Another part of the thesis is devoted to show that if G is a certain kind of semi-direct product, the inclusion l^1(G)subset C^*_r(G) induces isomorphisms in K-theory, we prove this statement by using two types of exact sequences without using Bost and Baum-Connes conjectures
Heymann, Retha. „Fredholm theory in general Banach algebras“. Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4265.
Der volle Inhalt der QuelleENGLISH ABSTRACT: This thesis is a study of a generalisation, due to R. Harte (see [9]), of Fredholm theory in the context of bounded linear operators on Banach spaces to a theory in a Banach algebra setting. A bounded linear operator T on a Banach space X is Fredholm if it has closed range and the dimension of its kernel as well as the dimension of the quotient space X/T(X) are finite. The index of a Fredholm operator is the integer dim T−1(0)−dimX/T(X). Weyl operators are those Fredholm operators of which the index is zero. Browder operators are Fredholm operators with finite ascent and descent. Harte’s generalisation is motivated by Atkinson’s theorem, according to which a bounded linear operator on a Banach space is Fredholm if and only if its coset is invertible in the Banach algebra L(X) /K(X), where L(X) is the Banach algebra of bounded linear operators on X and K(X) the two-sided ideal of compact linear operators in L(X). By Harte’s definition, an element a of a Banach algebra A is Fredholm relative to a Banach algebra homomorphism T : A ! B if Ta is invertible in B. Furthermore, an element of the form a + b where a is invertible in A and b is in the kernel of T is called Weyl relative to T and if ab = ba as well, the element is called Browder. Harte consequently introduced spectra corresponding to the sets of Fredholm, Weyl and Browder elements, respectively. He obtained several interesting inclusion results of these sets and their spectra as well as some spectral mapping and inclusion results. We also convey a related result due to Harte which was obtained by using the exponential spectrum. We show what H. du T. Mouton and H. Raubenheimer found when they considered two homomorphisms. They also introduced Ruston and almost Ruston elements which led to an interesting result related to work by B. Aupetit. Finally, we introduce the notions of upper and lower semi-regularities – concepts due to V. M¨uller. M¨uller obtained spectral inclusion results for spectra corresponding to upper and lower semi-regularities. We could use them to recover certain spectral mapping and inclusion results obtained earlier in the thesis, and some could even be improved.
AFRIKAANSE OPSOMMING: Hierdie tesis is ‘n studie van ’n veralgemening deur R. Harte (sien [9]) van Fredholm-teorie in die konteks van begrensde lineˆere operatore op Banachruimtes tot ’n teorie in die konteks van Banach-algebras. ’n Begrensde lineˆere operator T op ’n Banach-ruimte X is Fredholm as sy waardeversameling geslote is en die dimensie van sy kern, sowel as di´e van die kwosi¨entruimte X/T(X), eindig is. Die indeks van ’n Fredholm-operator is die heelgetal dim T−1(0) − dimX/T(X). Weyl-operatore is daardie Fredholm-operatore waarvan die indeks gelyk is aan nul. Fredholm-operatore met eindige styging en daling word Browder-operatore genoem. Harte se veralgemening is gemotiveer deur Atkinson se stelling, waarvolgens ’n begrensde lineˆere operator op ’n Banach-ruimte Fredholm is as en slegs as sy neweklas inverteerbaar is in die Banach-algebra L(X) /K(X), waar L(X) die Banach-algebra van begrensde lineˆere operatore op X is en K(X) die twee-sydige ideaal van kompakte lineˆere operatore in L(X) is. Volgens Harte se definisie is ’n element a van ’n Banach-algebra A Fredholm relatief tot ’n Banach-algebrahomomorfisme T : A ! B as Ta inverteerbaar is in B. Verder word ’n Weyl-element relatief tot ’n Banach-algebrahomomorfisme T : A ! B gedefinieer as ’n element met die vorm a + b, waar a inverteerbaar in A is en b in die kern van T is. As ab = ba met a en b soos in die definisie van ’n Weyl-element, dan word die element Browder relatief tot T genoem. Harte het vervolgens spektra gedefinieer in ooreenstemming met die versamelings van Fredholm-, Weylen Browder-elemente, onderskeidelik. Hy het heelparty interessante resultate met betrekking tot insluitings van die verskillende versamelings en hulle spektra verkry, asook ’n paar spektrale-afbeeldingsresultate en spektraleinsluitingsresultate. Ons dra ook ’n verwante resultaat te danke aan Harte oor, wat verkry is deur van die eksponensi¨ele-spektrum gebruik te maak. Ons wys wat H. du T. Mouton en H. Raubenheimer verkry het deur twee homomorfismes gelyktydig te beskou. Hulle het ook Ruston- en byna Rustonelemente gedefinieer, wat tot ’n interessante resultaat, verwant aan werk van B. Aupetit, gelei het. Ten slotte stel ons nog twee begrippe bekend, naamlik ’n onder-semi-regulariteit en ’n bo-semi-regulariteit – konsepte te danke aan V. M¨uller. M¨uller het spektrale-insluitingsresultate verkry vir spektra wat ooreenstem met bo- en onder-semi-regulariteite. Ons kon dit gebruik om sekere spektrale-afbeeldingsresultate en spektrale-insluitingsresultate wat vroe¨er in hierdie tesis verkry is, te herwin, en sommige kon selfs verbeter word.
Muzundu, Kelvin. „Spectral theory in commutatively ordered banach algebras“. Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71619.
Der volle Inhalt der QuelleAlbuquerque, Philipe Thadeo Lima Ferreira [UNESP]. „Ponto fixo: uma introdução no ensino médio“. Universidade Estadual Paulista (UNESP), 2014. http://hdl.handle.net/11449/110607.
Der volle Inhalt der QuelleO principal objetivo deste trabalho consiste na produção de um referencial teórico relacionado aos conceitos de ponto fixo, que possibilite, aos alunos do Ensino Médio, o desenvolvimento de habilidades e competências relacionadas à Matemática. Neste trabalho são colocadas abordagens contextualizadas e proposições referentes às noções de ponto fixo nas principais funções reais (afim, quadrática, modular, dentre outras) e sua interpretação geométrica. São abordados de maneira introdutória os conceitos do teorema do ponto fixo de Brouwer, o teorema do ponto fixo de Banach e o método de resolução de equações por aproximações sucessivas
The main objective of this work is to produce a theoretical concepts related to fixed point, enabling, for high school students, the development of skills and competencies related to Mathematics. This work placed contextualized approaches and proposals relating to notions of fixed point in the main real functions (affine, quadratic, modular, among others) and its geometric interpretation. Are approached introductory concepts of the fixed point theorem of Brouwer's, fixed point theorem of Banach and the method of solving equations by successive approximations
Lafforgue, Vincent. „K-theorie bivariante pour les algebres de banach et conjecture de baum-connes“. Paris 11, 1999. http://www.theses.fr/1999PA112062.
Der volle Inhalt der QuelleBücher zum Thema "K-theory of banach algebra"
Palmer, Theodore W. Banach algebras and the general theory of *-algebras. Cambridge [England]: Cambridge University Press, 1994.
Den vollen Inhalt der Quelle findenPalmer, Theodore W. Banach algebras and the general theory of *-algebras. Cambridge: Cambridge University Press, 2001.
Den vollen Inhalt der Quelle findenDouglas, Ronald G. Banach Algebra Techniques in Operator Theory. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1656-8.
Der volle Inhalt der QuelleDouglas, Ronald G. Banach algebra techniques in operator theory. 2. Aufl. New York: Springer, 1998.
Den vollen Inhalt der Quelle findenAbramovich, Y. A. Banach C(K)-modules and operators preserving disjointness. Harlow, Essex, England: Longman, 1992.
Den vollen Inhalt der Quelle findenHarmand, P. M-ideals in Banach spaces and Banach algebras. Berlin: Springer-Verlag, 1993.
Den vollen Inhalt der Quelle findenLocal and analytic cyclic homology. Zürich: European Mathematical Society, 2007.
Den vollen Inhalt der Quelle findenPerturbations of Banach algebras. Berlin: Springer-Verlag, 1985.
Den vollen Inhalt der Quelle findenK, Kitover A., Hrsg. Inverses of disjointness preserving operators. Providence, R.I: American Mathematical Society, 2000.
Den vollen Inhalt der Quelle findenTomczak-Jaegerman, Nicole. Banach-Mazur distances and finite-dimensional operator ideals. Harlow: Longman Scientific & Technical, 1989.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "K-theory of banach algebra"
Rosenberg, Jonathan. „Comparison Between Algebraic and Topological K-Theory for Banach Algebras and C*-Algebras“. In Handbook of K-Theory, 843–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-27855-9_16.
Der volle Inhalt der QuelleBerdikulov, M. A. „Order Unit Space of Type I n with Banach Ball Property“. In Algebra and Operator Theory, 183–86. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5072-9_16.
Der volle Inhalt der QuelleBridges, Douglas S., und Robin S. Havea. „Square Roots and Powers in Constructive Banach Algebra Theory“. In Lecture Notes in Computer Science, 68–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30870-3_8.
Der volle Inhalt der QuelleDas, Anupam, und Bipan Hazarika. „Measure of Noncompactness in Banach Algebra and Its Application on Integral Equations of Two Variables“. In Advances in Metric Fixed Point Theory and Applications, 311–32. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6647-3_13.
Der volle Inhalt der QuelleAupetit, Bernard. „Banach Algebras“. In A Primer on Spectral Theory, 30–68. New York, NY: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4612-3048-9_3.
Der volle Inhalt der QuelleKadison, Richard V., und John R. Ringrose. „Banach Algebras“. In Fundamentals of the Theory of Operator Algebras, 84–138. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-3212-4_3.
Der volle Inhalt der QuelleKadison, Richard, und John Ringrose. „Banach algebras“. In Fundamentals of the Theory of Operator Algebras. Volume I, 173–235. Providence, Rhode Island: American Mathematical Society, 1997. http://dx.doi.org/10.1090/gsm/015/03.
Der volle Inhalt der QuelleMüller, Vladimir. „Banach Algebras“. In Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, 1–79. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-7788-6_1.
Der volle Inhalt der QuelleKrupnik, Naum Yakovlevich. „Banach Algebras with Symbol“. In Operator Theory: Advances and Applications, 91–119. Basel: Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-5463-4_4.
Der volle Inhalt der QuelleStrung, Karen R. „Banach algebras and spectral theory“. In Advanced Courses in Mathematics - CRM Barcelona, 1–13. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47465-2_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "K-theory of banach algebra"
González, Manuel. „Banach spaces with small Calkin algebras“. In Perspectives in Operator Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-10.
Der volle Inhalt der QuelleChangping Xiong, Jun Zhu und Jinping Zhao. „K-stable subsets of extended derivations on Banach algebras“. In 2011 International Conference on Multimedia Technology (ICMT). IEEE, 2011. http://dx.doi.org/10.1109/icmt.2011.6002508.
Der volle Inhalt der QuelleMelo, Severino T., Ryszard Nest und Elmar Schrohe. „K-theory of Boutet de Monvel's algebra“. In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-10.
Der volle Inhalt der QuelleAuwalu, Abba, und Ali Denker. „Chatterjea-type fixed point theorem on cone rectangular metric spaces with banach algebras“. In INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0040595.
Der volle Inhalt der QuelleBUNKE, ULRICH, MICHAEL JOACHIM und STEPHAN STOLZ. „CLASSIFYING SPACES AND SPECTRA REPRESENTING THE K-THEORY OF A GRADED C*-ALGEBRA“. In Proceedings of the School. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704443_0003.
Der volle Inhalt der Quelle