Auswahl der wissenschaftlichen Literatur zum Thema „Kinetics of non-isothermal crystallization“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Kinetics of non-isothermal crystallization" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Kinetics of non-isothermal crystallization"

1

Eltahir, Yassir A., Haroon A. M. Saeed, Chen Yuejun, Yumin Xia, and Wang Yimin. "Parameters characterizing the kinetics of the non-isothermal crystallization of polyamide 5,6 determined by differential scanning calorimetry." Journal of Polymer Engineering 34, no. 4 (2014): 353–58. http://dx.doi.org/10.1515/polyeng-2013-0250.

Der volle Inhalt der Quelle
Annotation:
Abstract The non-isothermal crystallization behavior of polyamide 5,6 (PA56) was investigated by differential scanning calorimeter (DSC), and the non-isothermal crystallization kinetics were analyzed using the modified Avrami equation, the Ozawa model, and the method combining the Avrami and Ozawa equations. It was found that the Avrami method modified by Jeziorny could only describe the primary stage of non-isothermal crystallization kinetics of PA56, the Ozawa model failed to describe the non-isothermal crystallization of PA56, while the combined approach could successfully describe the non-
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zhou, Ying-Guo, Wen-Bin Wu, Gui-Yun Lu, and Jun Zou. "Isothermal and non-isothermal crystallization kinetics and predictive modeling in the solidification of poly(cyclohexylene dimethylene cyclohexanedicarboxylate) melt." Journal of Elastomers & Plastics 49, no. 2 (2016): 132–56. http://dx.doi.org/10.1177/0095244316641327.

Der volle Inhalt der Quelle
Annotation:
Isothermal and non-isothermal crystallization kinetics of polycyclohexylene dimethylene cyclohexanedicarboxylate (PCCE) were investigated via differential scanning calorimetry (DSC). Isothermal melt crystallization kinetics were analyzed using the traditional Avrami equation. Non-isothermal melt crystallization kinetics data obtained from DSC were analyzed using the extended Avrami relation and a combination of the Avrami equation and the Ozawa relationship. The glass transition temperature, equilibrium melting point, isothermal crystallization activation energy, and non-isothermal crystalliza
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Fu, Yang, Cuimeng Huo, Shuangyan Liu, Keqing Li, and Yuezhong Meng. "Non-Isothermal Crystallization Kinetics of Montmorillonite/Polyamide 610 Nanocomposites." Nanomaterials 13, no. 12 (2023): 1814. http://dx.doi.org/10.3390/nano13121814.

Der volle Inhalt der Quelle
Annotation:
Non-isothermal crystallization kinetics of montmorillonite (MMT)/polyamide 610 (PA610) composites were readily prepared by in situ melt polymerization followed by a full investigation in terms of their microstructure, performance, and crystallization kinetics. The kinetic models of Jeziorny, Ozawa, and Mo were used in turn to fit the experimental data, in all of which Mo’s analytical method was found to be the best model for the kinetic data. Differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) studies were used to investigate the isothermal crystallization behavi
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Zhi Qiang Wang, Zhi Qiang Wang, and Yong Ke Zhao and Xiang Feng Wu Yong Ke Zhao and Xiang Feng Wu. "Non-Isothermal Crystallization Kinetics of Graphene Oxide-Carbon Nanotubes Hybrids / Polyamide 6 Composites." Journal of the chemical society of pakistan 41, no. 3 (2019): 394. http://dx.doi.org/10.52568/000760/jcsp/41.03.2019.

Der volle Inhalt der Quelle
Annotation:
The hybrids combined by nano-materials with different dimensions usually possess much better enhancement effects than single one. Graphene oxide-carbon nanotubes hybrids / polyamide 6 composites has been fabricated. The non-isothermal crystallization kinetics of the as-prepared samples was discussed. Research results showed that increasing the cooling rate was in favor of increasing the crystallization rate and the degree of crystallinity for the as-prepared samples. Moreover, the crystallization rate was first decreased and then increased with increasing the hybrids loading. Furthermore, the
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Lee, Chain-Ming, Yeong-Iuan Lin, and Tsung-Shune Chin. "Crystallization kinetics of amorphous Ga–Sb–Te films: Part II. Isothermal studies by a time-resolved optical transmission method." Journal of Materials Research 19, no. 10 (2004): 2938–46. http://dx.doi.org/10.1557/jmr.2004.0379.

Der volle Inhalt der Quelle
Annotation:
Isothermal crystallization kinetics of amorphous Ga–Sb–Te films was studied by means of a time-resolved optical transmission method. Thin films with compositions along the pseudo-binary tie-lines Sb7Te3–GaSb and Sb2Te3–GaSb in the ternary phase diagram were prepared by the co-sputtering method. Crystallization of GaSbTe films reveals a two-stage process: an initial surface nucleation and coarsening (Stage 1) followed by the one-dimensional grain growth (Stage 2). The kinetic exponent (n) value in Stage 1 shows strong dependence on film compositions, while that of Stage 2 is less dependent. The
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Yang, Xiaodong, Bin Yu, Hui Sun, et al. "Isothermal and Non-Isothermal Crystallization Kinetics of Poly(ethylene chlorotrifluoroethylene)." Polymers 14, no. 13 (2022): 2630. http://dx.doi.org/10.3390/polym14132630.

Der volle Inhalt der Quelle
Annotation:
The isothermal (IT) and non-isothermal (NIT) crystallization kinetics, morphology, and structure of poly(ethylene chlorotrifluoroethylene) (ECTFE) were investigated via differential scanning calorimetry (DSC), polarized optical microscopy (POM), and wide-angle X-ray diffraction (XRD). The Avrami equation could well describe the overall IT crystallization process of ECTFE, and, furthermore, the overall crystallization rate decreased at higher crystallization temperatures (Tc). The equilibrium melting point for ECTFE was found to be 238.66 °C. The activation energies for IT and NIT crystallizati
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hu, Hui E., Zhou Lu, Xiao Hong Su, and Jing Xin Deng. "Study of the crystallization kinetics of a Zr57Cu15.4Ni12.6Al10Nb5 amorphous alloy." International Journal of Materials Research 111, no. 10 (2020): 849–56. http://dx.doi.org/10.1515/ijmr-2020-1111009.

Der volle Inhalt der Quelle
Annotation:
Abstract The non-isothermal crystallization kinetics with heating rates ranging from 10 K s-1to 80 K s-1and the isothermal crystallization kinetics during annealing from the glass transition temperature to the crystallization onset temperature of a Zr57Cu15.4Ni12.6Al10Nb5 amorphous alloy were studied in detail using X-ray diffraction and differential scanning calorimetry. During non-isothermal crystallization, it is more difficult to nucleate than to grow, and the crystallization resistance increases first and then decreases. During isothermal crystallization of the alloy from 713- 728 K, ther
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Milićević, Bojana, Milena Marinović-Cincović, and Miroslav D. Dramićanin. "Non-isothermal crystallization kinetics of Y2Ti2O7." Powder Technology 310 (April 2017): 67–73. http://dx.doi.org/10.1016/j.powtec.2017.01.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Piccarolo, S., V. Brucato, and Z. Kiflie. "Non-isothermal crystallization kinetics of PET." Polymer Engineering & Science 40, no. 6 (2000): 1263–72. http://dx.doi.org/10.1002/pen.11254.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zhang, Dao, Wang Shu Lu, Xiao Yan Wang, and Sen Yang. "Non-Isothermal Crystallization Kinetics of Mg61Zn35Ca4 Glassy Alloy." Materials Science Forum 898 (June 2017): 657–65. http://dx.doi.org/10.4028/www.scientific.net/msf.898.657.

Der volle Inhalt der Quelle
Annotation:
The non-isothermal crystallization kinetics of Mg61Zn35Ca4 glassy alloy prepared via melt-spinning were studied by using isoconversion method. The crystalline characterization of Mg61Zn35Ca4 was examined by X-ray diffraction. Different scanning calorimeter was used to investigate the non-isothermal crystallization kinetics at different heating rates (3-60 K/min). The calculated value of Avrami exponent obtained by Matusita method indicated that the crystalline transformation for Mg61Zn35Ca4 is a complex process of nucleation and growth. The Kissinger-Akahira-Sunose method was used to investiga
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Dissertationen zum Thema "Kinetics of non-isothermal crystallization"

1

Wang, Shujun. "Liquid-Liquid Phase Separation in an Isorefractive Polethylene Blend Monitored by Crystallization Kinetics and Crystal-Decorated Phase Morphologies." University of Akron / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=akron1226680911.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Failla, Simone. "Crystallization and morphology of the PLLA phase within random poly (L-lactide-ran-ɛ-caprolactone)". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/7638/.

Der volle Inhalt der Quelle
Annotation:
This work has mainly focused on the poly (L-lactide) (PLLA) which is a material for multiple applications with performances comparable to those of petrochemical polymers (PP, PS, PET, etc. ...), readily recyclable and also compostable. However, PLLA has certain shortcomings that limit its applications. It is a brittle, hard polymer with a very low elongation at break, hydrophobic, exhibits low crystallization kinetics and takes a long time to degrade. The properties of PLLA may be modified by copolymerization (random, block, and graft) of L-lactide monomers with other co-monomers. In this thes
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Bruna, Escuer Pere. "Microstructural characterization and modelling in primary crystallization." Doctoral thesis, Universitat Politècnica de Catalunya, 2007. http://hdl.handle.net/10803/6588.

Der volle Inhalt der Quelle
Annotation:
L'objectiu de la tesi és estudiar la cinètica de les cristal·litzacions primàries en vidres metàl·lics mitjançant simulacions de tipus phase field. Una cristal·lització primària és una transició de fase sòlid-sòlid on la fase que cristal·litza (fase transformada o fase secundaria) té una composició química diferent de la fase precursora (fase no transformada o fase primària).<br/>Les dades experimentals obtingudes a partir de l'estudi calorimètric de cristal·litzacions primàries s'analitzen generalment en el marc del model KJMA (Kolmogorov, Johnson & Mehl, Avrami). Aquest model proporciona l'
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Benke-Jacob, Julia [Verfasser], Matthias Akademischer Betreuer] Wuttig, and Joachim [Akademischer Betreuer] [Mayer. "Investigation of the crystallization kinetics in phase-change materials for different structurally non-crystalline phases in a wide time and temperature range / Julia Benke-Jacob ; Matthias Wuttig, Joachim Mayer." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1220082430/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Benke-Jacob, Julia Verfasser], Matthias [Akademischer Betreuer] Wuttig, and Joachim [Akademischer Betreuer] [Mayer. "Investigation of the crystallization kinetics in phase-change materials for different structurally non-crystalline phases in a wide time and temperature range / Julia Benke-Jacob ; Matthias Wuttig, Joachim Mayer." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1220082430/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Colonese, André. "Avaliação de propriedades mecânicas e térmicas de compósito à base de polietileno de alta densidade e hidroxiapatita deficiente de cálcio." Universidade do Estado do Rio de Janeiro, 2015. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=8492.

Der volle Inhalt der Quelle
Annotation:
No presente trabalho, foram processados compósitos de polietileno de alta densidade (PEAD) com hidroxiapatita deficiente de cálcio (HA), com o objetivo de obter materiais com melhores propriedades mecânicas e bioatividade. A adição da HA deficiente de cálcio proporcionou um aumento no módulo de elasticidade (maior rigidez), menor resistência ao impacto e decréscimo do grau de cristalinidade do PEAD, proporcionando uma maior bioatividade ao material. A análise térmica exploratória (sistema não isotérmico) foi realizada por meio da técnica de calorimetria exploratória diferencial (DSC) e foram a
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Červený, Ľuboš. "Kinetika neizotermické krystalizace polylaktidu s přídavkem vybraných činidel." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-444212.

Der volle Inhalt der Quelle
Annotation:
The aim of submitted diploma thesis is the study of non-isothermal crystallization kinetics of polylactide (PLA) with selected agents (1 %) and observation of the emerging crystalline structure under polarizing optical microscope. The agents were talc, a mixture of organic salts with the addition of amorphous SiO2 (HPN 68L) and zinc stearate (HPN 20E) and LAK-301 (potassium salt of 5-dimethylsulfoisophtalate), which is a nucleating agent developer for PLA. The PLA matrix served as a reference. Non-isothermal crystallization took place on a differential scanning calorimeter at cooling rates ()
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Joshi, Sameehan Shrikant. "Non-Isothermal Laser Treatment of Fe-Si-B Metallic Glass." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1062821/.

Der volle Inhalt der Quelle
Annotation:
Metallic glasses possess attractive properties, such as high strength, good corrosion resistance, and superior soft magnetic performance. They also serve as precursors for synthesizing nanocrystalline materials. In addition, a new class of composites having crystalline phases embedded in amorphous matrix is evolving based on selective crystallization of metallic glasses. Therefore, crystallization of metallic glasses and its effects on properties has been a subject of interest. Previous investigations from our research group related to laser assisted crystallization of Fe-Si-B metallic glass (
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Anderegg, David Alexander. "In-Situ Monitoring and Simulations of the Non-Isothermal Crystallization of FFF Printed Materials." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/99303.

Der volle Inhalt der Quelle
Annotation:
This thesis is concerned with the development of methods and models to aid in optimization and development of new materials for Fused Filament Fabrication (FFF). We demonstrate a novel FFF nozzle design to enable the first measurements of in-situ rheology inside FFF nozzles, which is critical for part performance by ensuring that the polymer extrudate is flowing at an appropriate temperature and flow rate during the part build process. Testing was performed using Acrylonitrile butadiene styrene filament and a modified Monoprice Maker Select 3D printer. Tests using the default temperature contr
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ojosipe, B. A. "Non-isothermal kinetics : stability studies of drugs using automated high pressure liquid chromatography." Thesis, University of Manchester, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356435.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Bücher zum Thema "Kinetics of non-isothermal crystallization"

1

Šesták, Jaroslav. Thermal analysis of Micro, Nano- and Non-Crystalline Materials: Transformation, Crystallization, Kinetics and Thermodynamics. Springer Netherlands, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

F, Kelton K., and United States. National Aeronautics and Space Administration., eds. Computer modeling of non-isothermal crystallization. 2nd ed. North-Holland, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

F, Kelton K., and United States. National Aeronautics and Space Administration., eds. Computer modeling of non-isothermal crystallization. 2nd ed. North-Holland, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

F, Kelton K., and United States. National Aeronautics and Space Administration., eds. Computer modeling of non-isothermal crystallization. 2nd ed. North-Holland, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

F, Kelton K., and United States. National Aeronautics and Space Administration., eds. Computer modeling of non-isothermal crystallization. 2nd ed. North-Holland, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

S, Ray C., and United States. National Aeronautics and Space Administration., eds. Non-isothermal calorimetric studies of the crystallization of lithium disilicate glass. 2nd ed. North-Holland, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

S, Ray C., and United States. National Aeronautics and Space Administration., eds. Non-isothermal calorimetric studies of the crystallization of lithium disilicate glass. 2nd ed. North-Holland, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

S, Ray C., and United States. National Aeronautics and Space Administration., eds. Non-isothermal calorimetric studies of the crystallization of lithium disilicate glass. 2nd ed. North-Holland, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Simon, Peter, and Jaroslav Šesták. Thermal analysis of Micro, Nano- and Non-Crystalline Materials: Transformation, Crystallization, Kinetics and Thermodynamics. Ingramcontent, 2014.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Non-isothermal calorimetric studies of the crystallization of lithium disilicate glass. 2nd ed. North-Holland, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Kinetics of non-isothermal crystallization"

1

Müller, Alejandro J., Rose Mary Michell, and Arnaldo T. Lorenzo. "Isothermal Crystallization Kinetics of Polymers." In Polymer Morphology. John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781118892756.ch11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Chen, Q. J., D. D. Wei, X. L. Zhou, J. W. Yan, X. Z. Hua, and Y. L. Ai. "Non-isothermal Crystallization Kinetics of Fe41Co7Cr15Mo14Y2C15B6 Bulk Amorphous Alloy." In Fe-Based Amorphous Alloys with High Glass Forming Ability. Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-96-3932-8_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Chu, Mei-Jan, and Tzong-Ming Wu. "Isothermal Crystallization Kinetics of Poly(Lactic Acid)/ Montmorillonite Nanocomposites." In Experimental Analysis of Nano and Engineering Materials and Structures. Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6239-1_411.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Zhou, Wang, Bing Xie, Wen-Feng Tan, Jiang Diao, Hong-Yi Li, and Zhang Tao. "Influence of CaO on Non-isothermal Crystallization Kinetics of Spinels in Vanadium Slag." In 7th International Symposium on High-Temperature Metallurgical Processing. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48093-0_83.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhou, Wang, Bing Xie, Wen-Feng Tan, Jiang Diao, Hong-Yi Li, and Zhang Tao. "Influence of CaO on Non-isothermal Crystallization Kinetics of Spinels in Vanadium Slag." In 7th International Symposium on High-Temperature Metallurgical Processing. John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119274643.ch83.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wu, Tzong-Ming, Sung-Fu Hsu, and Chien-Shiun Liao. "Isothermal Crystallization Kinetics of Poly(3-Hydroxybutyrate) /Layered Double Hydroxide Nanocomposites." In Experimental Analysis of Nano and Engineering Materials and Structures. Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6239-1_407.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Fang, Hai-Xing, Hong-Yi Li, Tao Zhang, Chao Liu, Cui Li, and Bing Xie. "Characteristics and Non-Isothermal Crystallization Kinetics of Spinels in Vanadium Slag Containing High Content of Chromium." In Characterization of Minerals, Metals, and Materials 2013. John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118659045.ch40.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hwang, Nong Moon. "Charge-Enhanced Kinetics." In Non-Classical Crystallization of Thin Films and Nanostructures in CVD and PVD Processes. Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-7616-5_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Surip, Siti Norasmah, Jaka Fajar Fatriansyah, Khairunnadim Ahmad Sekak, Nur Areisman Mohd Salleh, Andreas Federico, and Nur Athirah Abdullah Shukry. "Morphology, Isothermal Crystallization Kinetics and Mechanical Properties of Polyvinyl Alcohol/Aloe Vera Electrospun Nanofibers." In Springer Proceedings in Materials. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5567-1_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Pisitsak, Penwisa, and Rathanawan Magaraphan. "Non-Isothermal Crystallization Kinetics and Melting Behaviors of Thermoplastic/Liquid Crystalline Polymer Blends of Poly(Trimethylene Terephthalate)/Vectra A950." In Advances in Science and Technology. Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908158-11-7.249.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Kinetics of non-isothermal crystallization"

1

Kanchana, Pulinda K., Isurika U. Weerasinghe, D. A. S. Amarasinghe, Dinesh Attygala, A. M. P. B. Samarasekara, and Wenusara Satheekshana. "Unveiling PEEK’s Crystallization Kinetics with the Hay Model: An Isothermal DSC Study." In 2024 Moratuwa Engineering Research Conference (MERCon). IEEE, 2024. http://dx.doi.org/10.1109/mercon63886.2024.10688682.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hou, Jian, and Tao Chen. "Understanding of the Differences on CaCO3 and CaSO4 Control by Diethylenetriamine Penta (Methylphosphonic Acid) before and after Thermal Aging." In CONFERENCE 2023. AMPP, 2023. https://doi.org/10.5006/c2023-18789.

Der volle Inhalt der Quelle
Annotation:
Abstract The thermal degradation of scale inhibitors poses a challenge for scale control and flow assurance in high temperature reservoirs. Targeting this problem, this study investigated the mitigation of scale potential of the most commonly used phosphonate diethylenetriamine penta (methylphosphonic acid) (DETPMP) before and after thermal aging at high temperature. In this study, the DETPMP stock solution was oxygen removed and kept at 135°C for 7days. The performance of the aged and not aged DETPMP against CaCO3 and CaSO4 formation at high-temperature and high-hardness condition was investi
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Trnka, Jan, and Franti�ek �tep�nek. "Modeling the Impact of Non-Ideal Mixing on Continuous Crystallization: A Non-Dimensional Approach." In The 35th European Symposium on Computer Aided Process Engineering. PSE Press, 2025. https://doi.org/10.69997/sct.194630.

Der volle Inhalt der Quelle
Annotation:
Mathematical modeling is essential for the effective control of many chemical engineering processes, including crystallization. However, most existing crystallization models used in industry and academia assume ideal mixing. As a result, the unclear effects of imperfect mixing on crystallization, reported in experimental studies, remain largely unexplained. In this work we aim to address this gap in understanding by examining antisolvent crystallization processes on a�general theoretical level, using a novel dimensionless model. To address the impact of mixing on crystallization, we employ the
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Riedl, Gabriel, Martin Tiefenthaler, and Gernot M. Wallner. "A Non-Isothermal Curing Kinetics Model for Lamination of EVA or POE Based Double Glass PV Modules." In 2024 IEEE 52nd Photovoltaic Specialist Conference (PVSC). IEEE, 2024. http://dx.doi.org/10.1109/pvsc57443.2024.10748674.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Rao, T. Lilly Shanker, A. M. Shaker, T. Shanker Rao, and K. Venkataraman. "Non-isothermal crystallization kinetics in xanthan gum biopolymer." In INTERNATIONAL CONFERENCE ON MULTIFUNCTIONAL MATERIALS (ICMM-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0019759.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kratochvíl, Jaroslav, and Ivan Kelnar. "Non-isothermal crystallization kinetics in melt-drawn PCL/PLA microfibrillar composites." In VIII INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES”: From Aerospace to Nanotechnology. Author(s), 2016. http://dx.doi.org/10.1063/1.4949684.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zinet, Matthieu, Rabie El Otmani, M’hamed Boutaous, and Patrice Chantrenne. "A Numerical Model for Non-Isothermal Flow Induced Crystallization in Thermoplastic Polymers." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12122.

Der volle Inhalt der Quelle
Annotation:
In industrial forming processes such as extrusion or injection molding, polymeric materials experience severe thermomechanical conditions: high pressure, high deformation rates, very fast cooling kinetics and important temperature gradients. In semi-crystalline thermoplastics, such as polypropylene, these phenomena have a major influence on the crystallization occurring during cooling, which determines the final microstructure. Predicting the solidified part properties by numerical simulation requires the implementation of a crystallization kinetics model including both the thermally and flow
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kugele, Daniel, Dominik Dörr, Florian Wittemann, et al. "Modeling of the non-isothermal crystallization kinetics of polyamide 6 composites during thermoforming." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF GLOBAL NETWORK FOR INNOVATIVE TECHNOLOGY AND AWAM INTERNATIONAL CONFERENCE IN CIVIL ENGINEERING (IGNITE-AICCE’17): Sustainable Technology And Practice For Infrastructure and Community Resilience. Author(s), 2017. http://dx.doi.org/10.1063/1.5007992.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Eder, Gerhard. "The Role of Heat Transfer Problems in Standard Crystallization Experiments." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0838.

Der volle Inhalt der Quelle
Annotation:
Abstract In most publications dealing with crystallization kinetics also nowadays Avrami’s model from 1939 is used for analyzing experimental data. There have been made many attempts to generalize this isothermal model to arbitrary non-isothermal crystallization processes. The solution of this problem can be found in a work by A.N. Kolmogoroff from 1937. The basic crystallization kinetic quantities in this theory are some crystal growth rate and nucleation rate, which both may depend arbitrarily on time. For analyzing data with such models it is essential to have a good control of the temperat
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ondro, Tomáš, Štefan Csáki, František Lukáč, and Anton Trník. "Non-isothermal kinetic analysis of spinel phase crystallization from metakaolinite." In CENTRAL EUROPEAN SYMPOSIUM ON THERMOPHYSICS 2019 (CEST). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5120167.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Kinetics of non-isothermal crystallization"

1

Speranza, Vito, and Roberto Pantani. Investigation of isotactic polypropylene crystallization in processing conditions. Universidad de los Andes, 2024. https://doi.org/10.51573/andes.pps39.gs.msd.1.

Der volle Inhalt der Quelle
Annotation:
Flow and pressure applied during polymer transformation processes of semi-crystalline polymers can significantly affect the kinetics of crystallization, final morphology, and properties of the part. In commonly used polymer transformation processes, the molten polymer is subjected to high pressure and thermal stress, as well as intense shear and elongational flow fields. The effect of pressure on crystallization kinetics is significant from both scientific and technological perspectives since the polymer solidifies under high pressure in important industrial processing techniques. On the other
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!