Auswahl der wissenschaftlichen Literatur zum Thema „Krakatit“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Krakatit" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Krakatit"

1

Maslova, Ksenia. „Istoriia sozdaniia, tematika, problematika i khudozhestvennye osobennosti romana K. Chapeka «Krakatit»“. Slavic World: Commonality and Diversity, Nr. 2018 (2018): 268–72. http://dx.doi.org/10.31168/2619-0869.2018.3.1.8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bosnak, Judith, und Rick Honings. „‘Behoed ons arme volk voor de vulkaan-poëten’“. De Moderne Tijd 4, Nr. 3 (01.01.2020): 382–422. http://dx.doi.org/10.5117/dmt2020.3-4.012.honi.

Der volle Inhalt der Quelle
Annotation:
Abstract ‘Save our poor people from the vulcano poets’. The literary reception of the Krakatoa disaster of 1883 in the Netherlands and Indonesi On August 27, 1883, the volcano Krakatau in the Dutch East Indies erupted and collapsed, causing the deaths of tens of thousands, mainly as a result of devastating tsunamis. The Krakatau eruption was one of the first disasters to take place beyond the Dutch boundaries that received so much attention in the Netherlands. Because the Indies were a Dutch colony, a response of the motherland was rather logical. In many places, charity activities were organized to raise money for the victims. This article focuses on the Dutch and Indonesian literary reactions on the Krakatau disaster. For this purpose, two scholars work together: one specialized in Dutch Literary Studies and the other one in Indonesian Languages and Cultures. In the first part of the article several Dutch charity publications are analysed; the second part focuses on Indonesian sources (in Javanese and Malay). How and to what extend did the reactions in the Netherlands and Indonesia differ?
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Novriadi, Novriadi, Endang Linirin Widiastuti und Rikha Aryanie Surya. „EVALUASI KOMUNITAS TERUMBU KARANG DI PERAIRAN CAGAR ALAM LAUT KRAKATAU“. Jurnal Ilmiah Biologi Eksperimen dan Keanekaragaman Hayati 1, Nr. 1 (01.03.2013): 30–34. http://dx.doi.org/10.23960/jbekh.v1i1.96.

Der volle Inhalt der Quelle
Annotation:
Cagar Alam Laut Krakatau berada di daerah vulkanik Gunung Anak Krakatu. Aktivitas seismik yang diakibatkan oleh magma chamber Anak Krakatau menyebabkan goncangan pada dasar laut yang memungkinkan bergesernya substrat yang menjadi tempat terumbu karang tumbuh, Selain itu debu vulkanik akan mempengaruhi kalsifikasi dan pertumbuhan karang sehingga karang yang terbentuk akan rapuh dan rentan terhadap pengaruh lingkungan, seperti arus dan goncangan. Tujuan penelitian ini adalah untuk mengetahui kondisi terkini komunitas serta keanekaragaman terumbu karang di Cagar Alam Laut Krakatau. Penelitian dilakukan dari bulan Juli sampai Oktober 2012. Perairan yang menjadi stasiun penelitian adalah perairan Pulau Rakata. Metode manta tow digunakan pada saat survei pendahuluan dan metode Line Intercept Transect (LIT) digunakan dalam pengambilan data terumbu karang. Stasiun penelitian yang berda di perairan Pulau Rakata dibagi menjadi empat titik pengambilan sampel. pada kedalaman 5 meter dengan panjang transek 50 meter searah garis pantai. Hasil pengamatan menunjukkan bahwa dari 27 spesies dalam 7 famili terumbu karang yang ditemukan pada stasiun penelitian kondisinya bervariasi dari baik sekali hingga rusak dengan tingkat tutupan berkisar antara 90,88%, 56,54%,dan 38,32 %.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Jayaratne, Ravindra, Aldhiansyah Muhammad Fauzi, Hendra Achiari und Tomoya Shibayama. „MODELLING OF KRAKATOA TSUNAMI WAVE PROPAGATION AND COMMUNITY ENGAGEMENT BASED ON SWOT ANALYSIS IN SOUTHERN LAMPUNG, INDONESIA“. Coastal Engineering Proceedings, Nr. 36v (28.12.2020): 30. http://dx.doi.org/10.9753/icce.v36v.currents.30.

Der volle Inhalt der Quelle
Annotation:
The eruption of Krakatoa which occurred on the 22 December 2018 caused an avalanche from the Gunung Anak Krakatau (GAK) body into the sea, causing a tsunami in the Sunda Strait. The tsunami affected Lampung (Sumatra) and Banten (Java) provinces in Indonesia. Based on the field observations made by Takabatake et al. (2019) in the southern part of Lampung, it was identified that there were severely damaged areas in Lampung; i.e. East Way Muli, Central Way Muli, and Kunjir villages. A numerical model was developed to simulate past and future tsunami wave propagation scenarios. In addition, the strategic planning technique of SWOT analysis was carried out in order to make recommendations for the resilience of local coastal communities for future tsunami events in Southern Lampung.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/YR_UX_SdS6c
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Whittaker, R. J., und M. B. Bush. „Anak Krakatau and old Krakatau: a reply“. GeoJournal 29, Nr. 4 (April 1993): 417–20. http://dx.doi.org/10.1007/bf00807545.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Mabberley, D. J., M. Bush, P. Jones und K. Richards. „Krakatoa Revisited“. Journal of Biogeography 15, Nr. 2 (März 1988): 387. http://dx.doi.org/10.2307/2845419.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Wirasetiyawan, Dedy, Nawanto Budi Sukoco, Nur Riyadi und Dikdik Satria Mulyadi. „Identifikasi Perubahan Kontur Kedalaman Laut Diperairan Sekitar Anak Gunung Krakatau Pasca Erupsi Tahun 2018“. Jurnal Chart Datum 6, Nr. 2 (30.12.2020): 1–11. http://dx.doi.org/10.37875/chartdatum.v6i2.184.

Der volle Inhalt der Quelle
Annotation:
Krakatau (Rakata) adalah kepulauan vulkanik yang masih aktif yang terletak di Selat Sunda, antara Pulau Jawa dan Sumatera. Pada tahun 1927 atau kurang lebih 40 tahun setelah meletusnya Gunung Krakatau, muncul gunung api yang dikenal sebagai Anak Krakatau dari kawasan kaldera purba tersebut yang masih aktif dan tetap bertambah tingginya. Penyebab semakin tingginya gunung itu disebabkan oleh material yang keluar dari perut gunung baru itu. Pada penelitian ini dititik beratkan pada identifikasi perbandingan perubahan kontur kedalaman perairan disekitar Anak Gunung Krakatau sebelum dan pasca erupsi tahun 2018. Data penelitian ini berupa data sekunder Multibeam Echosounder (MBES) yang diperoleh dari hasil survei KRI Spica-934 di Perairan Selat Sunda atau di sekitar Anak Gunung Krakatau pasca erupsi tahun 2018 menggunakan MBES EM 2040 dan EM 302. Data yang diperoleh kemudian diolah menggunakan software Charis Hips and Sips selanjutnya dioverlay dengan Lembar Lukis Teliti (LLT) tahun 2016. Dari hasil penelitian didapatkan bahwa terjadi perubahan kontur kedalaman laut di area sekitar Anak Gunung Krakatau pasca erupsi tahun 2018 yang mengakibatkan pendangkalan hampir diseluruh area Anak Gunung Krakatau, terutama di bagian selatan dan barat dimana terdapat garis pantai yang menyempit akibat longsoran, selain itu berdasar data hasil olahan terdapat pola garis kontur kedalaman laut yang mendekati garis pantai.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Setiawati, Astriana Rahmi, Jamalam Lumbanraja, Septi Nurul Aini, Dermiyati Dermiyati, Henrie Buchari und Zuldadan Naspendra. „Texture and Chemical Properties of Two Depth Soils in a Toposequence of Anak Krakatau Before December 2018 Eruption“. JOURNAL OF TROPICAL SOILS 25, Nr. 2 (28.05.2020): 71. http://dx.doi.org/10.5400/jts.2020.v25i2.71-81.

Der volle Inhalt der Quelle
Annotation:
Anak Krakatau volcano is one of the famous volcanic mountains located in the sea to the south part of the Province of Lampung, Indonesia. The volcano was derived from the active Krakatau caldera that first appeared on the surface in 1930 or 47 years after the eruption of Krakatau in 1883. The materials produced by the Anak Krakatau eruption were very interesting related to soil forming materials, especially their physical and chemical properties. The objectives of this study were to present information about the texture and chemical properties of soil from Anak Krakatau Mountain taken at the southeast slope before the December 2018 eruption at two different depths. This study was conducted in March to September 2019 which consisted of two parts: (1) soil survey in the field and (2) soil analysis in the laboratory. Soil samples were taken from a toposequence at seven points with an interval about 15m above sea level (asl) on the southeast slope (approaching northeast) of the Anak Krakatau in July 2018 at the depth of 0-20 cm and 20-40 cm. The soil texture of Anak Krakatau mountain before eruption in December 2018 was sandy with the percentage of sand 98.82 - 99.59%; silt 0 - 0.59%; and clay 0.41 - 0.74%. The soil chemical properties of Anak Krakatau mountain were soil pH (H2O) 4.95 – 6.27; soil pH (KCl) 4.75 – 5.89; Cation Exchange Capacity 0.41 – 2.02 cmol(+) kg-1; Base Saturation 117.24 – 514.63%; CaO 2.63 – 6.34%; MgO 3.06 – 6.13%; K2O 0.019 – 0.034%; Na2O 0.035 – 0.080%; P-retention 82.10 – 84.74%; and organic carbon 0.06 – 0.72%. The SEM-EDX analysis showed that the amounts of Mg and Na were more than 1% and there were several trace elements present in Anak Krakatau soil, namely Sb (Stibium), Nb (Niobium), Y (Yttrium), F (Flour), Co (Cobalt), and Ba (Barium).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Choi, B. H., E. Pelinovsky, K. O. Kim und J. S. Lee. „Simulation of the trans-oceanic tsunami propagation due to the 1883 Krakatau volcanic eruption“. Natural Hazards and Earth System Sciences 3, Nr. 5 (31.10.2003): 321–32. http://dx.doi.org/10.5194/nhess-3-321-2003.

Der volle Inhalt der Quelle
Annotation:
Abstract. The 1883 Krakatau volcanic eruption has generated a destructive tsunami higher than 40 m on the Indonesian coast where more than 36 000 lives were lost. Sea level oscillations related with this event have been reported on significant distances from the source in the Indian, Atlantic and Pacific Oceans. Evidence of many manifestations of the Krakatau tsunami was a subject of the intense discussion, and it was suggested that some of them are not related with the direct propagation of the tsunami waves from the Krakatau volcanic eruption. Present paper analyzes the hydrodynamic part of the Krakatau event in details. The worldwide propagation of the tsunami waves generated by the Krakatau volcanic eruption is studied numerically using two conventional models: ray tracing method and two-dimensional linear shallow-water model. The results of the numerical simulations are compared with available data of the tsunami registration.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Gabrielson, Thomas B. „Krakatoa and the Royal Society: The Krakatoa Explosion of 1883“. Acoustics Today 6, Nr. 2 (April 2010): 14–19. http://dx.doi.org/10.1121/1.3467643.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Dissertationen zum Thema "Krakatit"

1

Schmitt, Susanne F. „Disturbance and succession on the Krakatau Islands, Indonesia“. Thesis, University of Oxford, 1997. http://ora.ox.ac.uk/objects/uuid:a2b3257d-0a00-4286-a38a-01e3016da708.

Der volle Inhalt der Quelle
Annotation:
This thesis set out to investigate the influence of disturbance on the succession of the Krakatau islands (Rakata, Sertung, Panjang). The hierarchical model of succession by S. Pickett and colleagues (1987) was adopted as a research framework, and provided the basis for an alternative model of succession on Krakatau that focuses on processes rather than successional pathways. Investigations were conducted on (i) the meso-scale, and (ii) the patch-scale, (i) quantified the recent disturbance regime, and inter- and intra-island differences in diversity, (ii) compared sapling performance (growth, mortality and recruitment), and species compositional patterning in space and time for saplings and the seed bank with respect to island, gap size and severity of disturbance. Multivariate techniques were used, and amongst other attempts at characterising the light environment, hemispherical photography was employed. For the first time the effect of a continuous period of volcanic activity (1992-1995) of Anak Krakatau could be directly quantified and compared between Panjang and Sertung (ash-affected) and Rakata (receiving no ash). Increased rates of gap formation in the volcanically active period in comparison to the previous decade were found for all islands. This supports the disturbance-driven model of Whittaker and colleagues. However, an extension is required, because, contrary to expectation, Rakata also experienced more disturbance. This increase is argued to be a result of more severe weather conditions, and an increased number of earth tremors, during times of volcanic activity. The disturbance factors of extreme climatic events (e.g. ENSO events) and human impact are also proposed for inclusion in the alternative model. Drought associated with the 1994 El Niño is of relevance to short-term and potential long-term impact on regeneration dynamics and succession. Attention was drawn to the local human influence of pumice mining on the coastal forests. Supporting previous findings on the plot- and whole island scales, data from species presence/absence transects established that species richness and beta-diversity on the ash- affected islands was also lower on the meso-scale. Panjang's canopy composition is less uniform, and locally more species-rich than Sertung's. More evidence of the suggested decline of the mono-dominant species Neonauclea calycina and Timonius compressicaulis was gathered. The third dominant, Dysoxylum gaudichaudianum, is expanding in the lowlands of all islands. This is aided by its ability to regenerate in moderate shade, to grow rapidly in gap environments, and its tolerance of ash-fall, drought and herbivory. However, on Rakata, it is not expected to become generally mono-dominant because a considerable number of other potential canopy species are present. Sapling performance and species composition and its changes were in general strongly affected by ash-fall and drought. These factors tended to override effects of gap size and severity of disturbance. Advance regeneration, and the composition of the local forest type were identified as important factors influencing the composition of the early stages of gap-fill. The local forest type also seemed to contribute most to seed bank composition. As rarer species tended to have clumped distributions, and 'safe sites' for regeneration seemed not to be limiting, dispersal constraints were argued to be the most likely factors slowing diversification, unless further severe volcanic disturbance leads to successional set-back. The latter also strongly limits the predictability of succession on Krakatau.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Dahrén, Börje. „Investigating Magma Plumbing Beneath Anak Krakatau Volcano, Indonesia : Evidence for Multiple Magma Storage Regions“. Thesis, Uppsala universitet, Berggrundsgeologi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-137309.

Der volle Inhalt der Quelle
Annotation:
Improving our understanding of magma plumbing and storage remains one of the majorchallenges for petrologists and volcanologists today. This is especially true for explosivevolcanoes, where constraints on magma plumbing are essential for predicting dynamicchanges in future activity and thus for hazard mitigation. This study aims to investigate themagma plumbing system at Anak Krakatau; the post-collapse cone situated on the rim of the1883 Krakatau caldera. Since 1927, Anak Krakatau has been highly active, growing at a rateof ~8 cm/week. The methods employed are a.) clinopyroxene-melt thermo-barometry (Putirkaet al., 2003; Putirka, 2008), b.) plagioclase-melt thermo-barometry (Putirka, 2005), c.)clinopyroxene composition barometry (Nimis & and Ulmer, 1998; Nimis, 1999; Putirka,2008) and d.) olivine-melt thermometry (Putirka et al., 2007). Previously, both seismic(Harjono et al., 1989) and petrological studies (Camus et al., 1987; Mandeville et al., 1996a;Gardner et al., in review, J. Petrol.) have addressed the magma plumbing beneath AnakKrakatau. Interestingly, petrological studies indicate shallow magma storage in the region of2-8 km, while the seismic evidence points towards a mid-crustal and a deep storage, at 9 and22 km respectively.This study shows that clinopyroxene presently crystallizes in a mid-crustal storage region(8-12 km), a previously identified depth level for magma storage, using seismic methods(Harjono et al., 1989). Plagioclases, in turn, form at shallower depths (4-6 km), in concertwith previous petrological studies (Camus et al., 1987; Mandeville et al., 1996a; Gardner etal., in review, J. Petrol.). Pre-1981 clinopyroxenes record deeper levels of storage (8-22 km),indicating that there may have been an overall shallowing of the plumbing system over thelast ~40 years. The magma storage regions detected coincide with major lithologicalboundaries in the crust, implying that magma ascent and storage at Anak Krakatau is probablycontrolled by crustal discontinuities and/or density contrasts. Therefore, this study shows thatpetrology has the sensitivity to detect magma bodies in the crust where seismic surveys faildue to limited resolution. Combined geophysical and petrological surveys offer an increasedpotential for the thorough characterization of magma plumbing at active volcanic complexes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Dahrin, Darharta. „Etude bathymétrique et gravimétrique du détroit de la sonde et du volcan Krakatau (Indonésie) : implications géodynamiques et volcanologiques“. Paris 7, 1993. http://www.theses.fr/1993PA077242.

Der volle Inhalt der Quelle
Annotation:
Cette etude qui porte sur la geodynamique, la volcanologie du detroit de la sonde et la structure interne du volcan krakatau a ete realisee, en modelisant des donnees bathymetriques et gravimetriques. Dans le detroit de la sonde, la carte bathymetrique obtenue confirme l'existence d'un graben en pull-apart, qui est actif actuellement dans la partie ouest. D'autre part, la carte de l'anomalie de bouguer revele une anomalie negative, dans la prolongation de la faille de sumatra vers l'est, qui est en accord avec une migration vers l'ouest de la zone de transition entre la convergence normale a java et oblique a sumatra. La modelisation gravimetrique est en faveur d'une croute effondree dans le domaine sud-ouest du detroit. L'etude du comportement mecanique de la lithosphere montre une rigidite relativement faible (te = 1. 5 km) dans cette region. Une anomalie positive, correlee avec une anomalie magnetique, situee entre l'ile de panaitan et le krakatau est interpretee comme la signature d'une intrusion volcanique. Dans le complexe du krakatau, la bathymetrie presente une morphologie actuelle de la caldeira avec une forme plate a la profondeur de 240 m et des murs lineaires a forte pente (20). Les modeles gravimetriques 3d montrent un effondrement profond et un remplissage de materiaux legers au fond de la caldeira. La structure du proto krakatau est mis en evidence par les modeles 3d. Une structure majeure orientee n150e est soulignee par la bathymetrie et l'anomalie de bouguer et est associee aux centres actifs volcaniques anciens et actuels. Enfin, ces resultats montrent que l'anak krakatau est situe sur la limite ne de la caldeira de l'eruption de 1883 et sur une structure majeure n150e, site qui peut etre instable
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Beermann, Oliver [Verfasser]. „The solubility of sulfur and chlorine in H2O-bearing dacites of Krakatau and basalts of Mt. Etna / Oliver Beermann“. Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover, 2010. http://d-nb.info/1008672874/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Iskandarsyah, Yan. „The sedimentary recordings of the tsunamis triggered by the 1883-Krakatau eruptions on the littoral South of Sunda Strait in the region of Ujung Kulon, Java Island, Indonesia, and the role of the coastal morphology on the organisation and the characteristics of the deposits“. Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAH017/document.

Der volle Inhalt der Quelle
Annotation:
En août 1883, l'éruption du Krakatau a provoqué des vagues de tsunami. Au centre et au Nord du détroit de la Sonde, peuples au moment de l’évènement de 1883 ont fourni de nombreux témoignages visuels des phénomènes volcaniques et des tsunamis. Les côtes sauvages et austères du Sud, notamment de la région de Ujung Kulon ont toujours été exemptes de populations. Il existe donc des lacunes dans les connaissances concernant le nombre et les caractéristiques des inondations de tsunamis sur ces côtes de Ujung Kulon. L’objectif de ce travail est d’explorer et de comprendre la façon dont les tsunamis générés par les différentes phases éruptives du Krakatau en1883 ont eu lieu à Ujung Kulon sur la base d’un déchiffrage aussi poussé que possible de l'enregistrement de phénomènes extrêmes dans des dépôts sédimentaire le long des littoraux sud du détroit de la Sonde. Pour atteindre cet objectif, trois méthodes d'analyse de texture et de composition sont appliquées, à savoir l'analyse de distribution granulométrique, l'identification des microfaunes et l’Anisotropie de la Susceptibilité Magnétique (ASM). Les résultats des analyses ont démontrés cependant que l'isthme en péninsule de Ujung Kulon a enregistré 4 (quatre) tsunamis liés aux éruptions et évidences que chaque vague a été enregistrée deux fois: i) par un flux direct provenant du détroit de la Sonde en ligne droite, ii) par une vague venant de l'océan Indien, retardée dans le temps après avoir été réfractée dans l’extrémité ouest de la péninsule de Ujung Kulon (près de l'île Panaitan). Cette preuve était unique et pourrait être liée au contexte géomorphologique exceptionnel de la péninsule de Ujung Kulon, y compris l'isthme et ses baies en forme de V, qui en font l'un des pièges les plus remarquables de dépôts de tsunami
The giant tsunamis generated by the tremendous eruptions of Krakatau in 1883 were recorded along the coasts of Sunda Strait. Eyewitnesses testimony, tidal and pressure gauges recorded at Batavia (Jakarta), and tsunami signatures left by such event have been mostly used by researchers to evidencing the occurrence of the 1883-Krakatau tsunami around the Sunda Strait. Yet, there was still gap in knowledge when talking about the evidences of the 1883-Krakatau tsunami in the southern part of Sunda Strait and around Indian Ocean, due to the lack of eyewitness and a fact that some of the coasts is mostly noted as the remote areas. Laban Isthmus, one of the intriguing coastal landforms located 80 km to the south of Krakatau and connect Ujung Kulon Peninsula to Java Island, displayed the potential to record marine flooding events issuing from Sunda Strait and Indian Ocean. This study demonstrated however that the isthmus has recorded 4 (four) tsunami events related to the eruptions. Based on a new combination approach of sedimentary and micro-fossils analyses with the Anisotropy of Magnetic Susceptibility (AMS) technique, the result of the study evidenced that each wave was recorded twice: i) by a direct flow coming from the Sunda Strait in straight line, ii) by a wave coming from the Indian Ocean, delayed in time after having been refracted around the West-end of Ujung Kulon Peninsula (near Panaitan Island). Such evidence was unique and could be related to the exceptional geomorphological context of the Ujung Kulon Peninsula, including the isthmus and its V-shape bays, which made it one of the most remarkable traps of tsunami deposits
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Fischerová, Simona. „Krakatit Karla Čapka a Otakara Vávry“. Master's thesis, 2014. http://www.nusl.cz/ntk/nusl-328753.

Der volle Inhalt der Quelle
Annotation:
This thesis emphasize on the analysis of the Karel Čapek's novel "Krakatit" and its film adaptation directed by Otakar Vávra. The first part concentrates on some basic adaptation principals which comes from the relevant contemporary literature. In the next chapter the thesis focuses on problematics of the intermediary transcription and it highlights some issues of such adaptation (for example how to present an introspection). The theoretically oriented part of the thesis is completed by stating the difficulties with the evaluation of such adaptation from a diachronic point of view and by defining the elemental terms of the narrative theory (story, character, narrator). The practical part presents literary characteristics of the novel based on the appropriate literature. The next chapter is focused on the multi- genre characteristics and the story of the novel (according to the studies of Jan Mukařovský and Eva Strohsová). The analysis of the character focuses on the lead role and works with different motives, such as childhood, mystery and unknown. It also includes the list of relevant figures of speech and the role of the narrator in Krakatit. In the comparative analysis of the novel and the film adaptation there is described Vávra's attempt to bring the novel up to date. The film is being set in...
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Schwarz, Wolfgang F. „Onomastica fantastica. Namen als Kompositionsmittel bei Karel Čapek: 'Krakatit'“. 1997. https://ul.qucosa.de/id/qucosa%3A31297.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Krakatit"

1

Čapek, Karel. Krakatit. 2. Aufl. Praha: Academia, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Čapek, Karel. Krakatit. 2. Aufl. Praha: Academia, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Čapek, Karel. Krakatit. Praha: Československý spisovatel, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

H, Ganes T. Krakatau. Jakarta: Pluz+, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Nardo, Don. Krakatoa. San Diego, Calif: Lucent Books, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Nuldyn, Zam. Dewi Krakatau. Jakarta: Penerbit dan distribusi Anjaya Books, 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Benoit, Peter. The Krakatau eruption. New York: Children's Press, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Matthews, Rupert. The eruption of Krakatoa. New York: Bookwright Press, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Szczypiorski, Andrzej. Kumkanie żaby, krakanie wrony--. Poznań: SAWW, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Willumsen, Peter. Krakatau, events and geology: A practical guide to Krakatau and surroundings. [Jakarta]: P. Willumsen, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Buchteile zum Thema "Krakatit"

1

McGuire, Bill. „Krakatoa (Krakatau)“. In Encyclopedia of Natural Hazards, 576–78. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-1-4020-4399-4_205.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Weinbuch, Sonja. „Globale Erschütterungen: Tambora und Krakatau“. In Ökologische Erinnerungsorte, 273–302. Göttingen: Vandenhoeck & Ruprecht, 2013. http://dx.doi.org/10.13109/9783666300516.273.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Simkin, Tom, und Richard S. Fiske. „Krakatau 1883 A Classic Geophysical Event“. In History of Geophysics, 46–48. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/hg001p0046.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Divasón, Jose, und Ana Romero. „Using Krakatoa for Teaching Formal Verification of Java Programs“. In Formal Methods Teaching, 37–51. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32441-4_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Field, Richard, und David Newsome. „Krakatau: Tourism and the Recovery of a Volcanic Rainforest“. In Volcanic Tourist Destinations, 217–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-16191-9_17.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Guzek, Mariusz. „Krakatit i Ciemne słońce – adaptacje prozy Karela Čapka autorstwa Otakara Vávry“. In Hrabal i inni. Adaptacje czeskiej literatury, 9–26. Wydawnictwo Uniwersytetu Łódzkiego, 2013. http://dx.doi.org/10.18778/7525-950-6.02.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

„ZUR ENTWICKLUNGSSTRUKTUR DER TSCHECHISCHEN PHANTASTIK BIS ZU KAREL CAPEKS KRAKATIT: REPRÄSENTATION, INNERER BAU DER DINGE UND ZEICHENAUFLÖSUNG“. In Die magische Schreibmaschine :Aufsätze zur Tradition des Phantastischen in der Literatur, 75–102. Vervuert Verlagsgesellschaft, 1998. http://dx.doi.org/10.31819/9783964566911-003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

„Krakatau“. In Encyclopedia of Islands, 517–20. University of California Press, 2019. http://dx.doi.org/10.1525/9780520943728-120.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

„Krakatau (Indonesia)“. In Asia and Oceania, 513–16. Routledge, 2012. http://dx.doi.org/10.4324/9780203059173-117.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

van Sandick, R. A. „The Eruption of Krakatoa“. In The Indonesia Reader, 252–55. Duke University Press, 2009. http://dx.doi.org/10.1215/9780822392279-061.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Krakatit"

1

Firmansyah, Teguh, Anggoro Anggoro, Herudin Herudin und Dwi Widyaningsih. „Perancangan Sistem Informasi Koperasi Mitra Sejahtera di PT. Krakatau Information Technology“. In Seminar Nasional: Peranan Ipteks Menuju Industri Masa Depan (PIMIMD) 2017. ITP Press, 2017. http://dx.doi.org/10.21063/pimimd4.2017.112-115.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Pujiyanto, Hamdani. „Improvement of rolling 6 mm thin plates in plate rolling mill PT. Krakatau Posco“. In PROCEEDINGS OF THE 1ST INTERNATIONAL PROCESS METALLURGY CONFERENCE (IPMC 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4974437.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Abdurrahman, Nunun, Didit Adytia, Nugrahinggil Subasita und Adiwijaya. „Supervised Artificial Neural Network approach for Tsunami Inversion: A Case Study from 2018 Gunung Anak Krakatau“. In 2020 International Conference on Data Science and Its Applications (ICoDSA). IEEE, 2020. http://dx.doi.org/10.1109/icodsa50139.2020.9212984.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Juniarti, Anita Dyah, Sri Mukti Wirawati und Herry Kartika Gandhi. „Analysis of Quality Control of Steel Plate Products with Six Sigma Method at PT. Krakatau Posco“. In 1st International Multidisciplinary Conference on Education, Technology, and Engineering (IMCETE 2019). Paris, France: Atlantis Press, 2020. http://dx.doi.org/10.2991/assehr.k.200303.033.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Badriana, M. R., H. Bachtiar, D. Adytia, L. Sembiring, Andonowati und E. van Groesen. „Wave run-up of a possible Anak-Krakatau tsunami on planned and optimized Jakarta Sea Dike“. In INTERNATIONAL SYMPOSIUM ON EARTH HAZARD AND DISASTER MITIGATION (ISEDM) 2016: The 6th Annual Symposium on Earthquake and Related Geohazard Research for Disaster Risk Reduction. Author(s), 2017. http://dx.doi.org/10.1063/1.4987103.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Agustan, Agustan, und Estu Kriswati. „Ground Deformation of Anak Krakatau Volcano Before and After the December 2018 Eruptions Observed by SAR Images“. In 2019 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS). IEEE, 2019. http://dx.doi.org/10.1109/agers48446.2019.9034446.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Supriadi, Sugeng, Jos Istiyanto, Gandjar Kiswanto, Ario Sunar Baskoro, A. S. Danardono, Patrick T. Tobing und Redian AlKindi Muchtar. „Forming technique for cold rolled steel produced by PT Krakatau Steel for national electric vehicle body materials“. In 2013 Joint International Conference on Rural Information & Communication Technology and Electric-Vehicle Technology (rICT & ICeV-T). IEEE, 2013. http://dx.doi.org/10.1109/rict-icevt.2013.6741539.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Paris, Alexandre, Philippe Heinrich, Raphael Paris, Cyrielle Guerin, Helene Hebert und Audrey Gailler. „Numerical modeling of the December 22, 2018 Anak Krakatau landslide and the following tsunami in Sunda Strait, Indonesia“. In OCEANS 2019 - Marseille. IEEE, 2019. http://dx.doi.org/10.1109/oceanse.2019.8867270.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hamzah, Hamzah, Wahyu Sasongko, Rohaini Rohaini und Rahmi Amelia. „The WTO Trade Remedies (Safeguards) and its Implementation in Indonesia: Study Case of PT. Krakatau Steel vs. China“. In Proceedings of The International Conference on Environmental and Technology of Law, Business and Education on Post Covid 19, ICETLAWBE 2020, 26 September 2020, Bandar Lampung, Indonesia. EAI, 2020. http://dx.doi.org/10.4108/eai.26-9-2020.2302645.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kasir. „Analysis of Financial Distress Altman Z-Core Method and Springate S-Core Method in PT Krakatau Steel (Persero) Tbk“. In 5th Global Conference on Business, Management and Entrepreneurship (GCBME 2020). Paris, France: Atlantis Press, 2021. http://dx.doi.org/10.2991/aebmr.k.210831.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie