Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „LGMDR8“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "LGMDR8" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "LGMDR8"
Alonso-Pérez, Jorge, Lidia González-Quereda, Luca Bello, Michela Guglieri, Volker Straub, Pia Gallano, Claudio Semplicini et al. „New genotype-phenotype correlations in a large European cohort of patients with sarcoglycanopathy“. Brain 143, Nr. 9 (01.09.2020): 2696–708. http://dx.doi.org/10.1093/brain/awaa228.
Der volle Inhalt der QuelleLasa-Elgarresta, Jaione, Laura Mosqueira-Martín, Neia Naldaiz-Gastesi, Amets Sáenz, Adolfo López de Munain und Ainara Vallejo-Illarramendi. „Calcium Mechanisms in Limb-Girdle Muscular Dystrophy with CAPN3 Mutations“. International Journal of Molecular Sciences 20, Nr. 18 (13.09.2019): 4548. http://dx.doi.org/10.3390/ijms20184548.
Der volle Inhalt der QuelleTasca, Giorgio, Mauro Monforte, Jordi Díaz-Manera, Giacomo Brisca, Claudio Semplicini, Adele D’Amico, Fabiana Fattori et al. „MRI in sarcoglycanopathies: a large international cohort study“. Journal of Neurology, Neurosurgery & Psychiatry 89, Nr. 1 (09.09.2017): 72–77. http://dx.doi.org/10.1136/jnnp-2017-316736.
Der volle Inhalt der QuelleKhadilkar, Satish V., Bhagyadhan A. Patel und Jamshed A. Lalkaka. „Making sense of the clinical spectrum of limb girdle muscular dystrophies“. Practical Neurology 18, Nr. 3 (22.02.2018): 201–10. http://dx.doi.org/10.1136/practneurol-2017-001799.
Der volle Inhalt der QuelleHadj Salem, Ikhlass, Fatma Kamoun, Nacim Louhichi, Souad Rouis, Mariam Mziou, Nourhene Fendri-Kriaa, Fatma Makni-Ayadi, Chahnez Triki und Faiza Fakhfakh. „Mutations in LAMA2 and CAPN3 genes associated with genetic and phenotypic heterogeneities within a single consanguineous family involving both congenital and progressive muscular dystrophies“. Bioscience Reports 31, Nr. 2 (23.11.2010): 125–35. http://dx.doi.org/10.1042/bsr20100026.
Der volle Inhalt der QuelleCozma, Liviu, Maria Barsevschi, Cristina Mitu, Alexandra Bastian und Bogdan Ovidiu Popescu. „SURPRISING GENOTYPE EXPRESSED AS A COMMON LIMB-GIRDLE MUSCULAR DYSTROPHY“. Romanian Journal of Neurology 16, Nr. 2 (30.06.2017): 71–73. http://dx.doi.org/10.37897/rjn.2017.2.6.
Der volle Inhalt der QuelleMarchuk, Margarita, Tetiana Dovbonos, Halyna Makukh, Orest Semeryak und Yevheniya Sharhorodska. „Sarcotubular Myopathy Due to Novel TRIM32 Mutation in Association with Multiple Sclerosis“. Brain Sciences 11, Nr. 8 (31.07.2021): 1020. http://dx.doi.org/10.3390/brainsci11081020.
Der volle Inhalt der QuellePathak, Pankaj, Mehar Chand Sharma, Pankaj Jha, Chitra Sarkar, Mohammed Faruq, Prerana Jha, Vaishali Suri et al. „Mutational Spectrum of CAPN3 with Genotype-Phenotype Correlations in Limb Girdle Muscular Dystrophy Type 2A/R1 (LGMD2A/LGMDR1) Patients in India“. Journal of Neuromuscular Diseases 8, Nr. 1 (01.01.2021): 125–36. http://dx.doi.org/10.3233/jnd-200547.
Der volle Inhalt der QuelleWillis, Erin, Steven A. Moore, Mary O. Cox, Vikki Stefans, Akilandeswari Aravindhan, Murat Gokden und Aravindhan Veerapandiyan. „Limb-Girdle Muscular Dystrophy R9 due to a Novel Complex Insertion/Duplication Variant in FKRP Gene“. Child Neurology Open 9 (Januar 2022): 2329048X2210975. http://dx.doi.org/10.1177/2329048x221097518.
Der volle Inhalt der QuelleAngelini, C., L. Nardetto, C. Borsato, R. Padoan, M. Fanin, A. C. Nascimbeni und E. Tasca. „The clinical course of calpainopathy (LGMD2A) and dysferlinopathy (LGMD2B)“. Neurological Research 32, Nr. 1 (Februar 2010): 41–46. http://dx.doi.org/10.1179/174313209x380847.
Der volle Inhalt der QuelleDissertationen zum Thema "LGMDR8"
Kirk, Calum Norman Robert. „Pathophysiology of anoctaminopathy (LGMD2L)“. Thesis, University of Newcastle upon Tyne, 2017. http://hdl.handle.net/10443/3861.
Der volle Inhalt der QuelleBritton, Stephen Andrew. „Characterisation of expressed sequences from LGMD2B region of chromosome 2p13“. Thesis, University of Newcastle Upon Tyne, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311106.
Der volle Inhalt der QuelleRichard, Isabelle. „Etiologie moleculaire de la dystrophie musculaire des ceintures type 2a (lgmd2a)“. Paris 7, 1996. http://www.theses.fr/1996PA077273.
Der volle Inhalt der QuelleBawa, Simranjot. „Exploring the molecular mechanisms of Drosophila dTRIM32 implicated in pathogenesis of Limb-Girdle Muscular Dystrophy 2H“. Thesis, Kansas State University, 2017. http://hdl.handle.net/2097/38243.
Der volle Inhalt der QuelleBiochemistry and Molecular Biophysics Interdepartmental Program
Erika Rae Geisbrecht
The E3 ubiquitin ligase TRIM32 is a member of tripartite motif (TRIM) family of proteins involved in various processes including differentiation, cell growth, muscle regeneration and cancer. TRIM32 is conserved between vertebrates (humans, mouse) and invertebrates (Drosophila). The N-terminus of this protein is characterized by a RING domain, B-box domain, and Coiled-Coil region, while the C-terminus contains six NHL repeats. In humans, mutations that cluster in the NHL domains of TRIM32 result in the muscle disorders Limb-Girdle Muscular Dystrophy type 2H (LGMD2H) and Sarcotubular Myopathy (STM). Mutations in the B-box region cause Bardet-Biedl Syndrome (BBS), a clinically separate disorder that affects multiple parts of the body. A comprehensive genetic analysis in vertebrate models is complicated by the ubiquitous expression of TRIM32 and neurogenic defects in TRIM32-/- mutant mice that are independent of the muscle pathology associated with LGMD2H. The model organism Drosophila melanogaster possesses a TRIM32 [dTRIM32/Thin (Tn)/Abba] homolog highly expressed in muscle tissue. We previously showed that dTRIM32 is localized to Z-disk of the sarcomere and is required for myofibril stability. Muscles form correctly in Drosophila tn mutants, but exhibit a degenerative muscle phenotype once contraction ensues. Mutant or RNAi knockdown larvae are also defective in locomotion, which mimics clinical features associated with loss of TRIM32 in LGMD2H patients. It is predicted that mutations in the NHL domain either affect protein structure or are involved in protein-protein interactions. However, the molecular mechanism by which these mutations affect the interaction properties of dTRIM32 is not understood. Biochemical pulldown assays using the bait fusion protein GST-dTRIM32-NHL identified numerous dTRIM32 binding proteins in larval muscle tissue. Many key glycolytic enzymes were present in the dTRIM32 pulldowns and not in control experiments. Glycolytic genes are expressed in the developing Drosophila musculature and are required for myoblast fusion. Strikingly, many glycolytic proteins are also found at the Z-disk, consistent with dTRIM32 localization. Our biochemical and genetic studies provide evidence that there is direct interaction between dTRIM32 and glycolytic proteins (Aldolase and PGLYM). dTRIM32 also regulates glycolytic enzyme levels and protein localization at their sites of action. These data together suggest a role for dTRIM32 in coordinating glycolytic enzyme function, possibly for localized ATP production or to maintain muscle mass via glycolytic intermediates.
Rathgeber, Matthew F. „Galectin-1 Improves Sarcolemma Repair and Decreases the Inflammatory Response in LGMD2B Models“. BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8723.
Der volle Inhalt der QuelleTaveau, Mathieu. „Caractérisation de la fonction et du mécanisme d'activation de la calpaïne 3, une protéase musculaire déficiente dans la dystrophie des ceintures de type 2A“. Paris 6, 2003. http://www.theses.fr/2003PA066315.
Der volle Inhalt der QuelleFOUGEROUSSE, FRANCOISE. „Cartographie d'une region genetique impliquee dans la dystrophie musculaire des ceintures (lgmd2)“. Paris 7, 1994. http://www.theses.fr/1994PA077140.
Der volle Inhalt der QuelleMonjaret, François. „Evaluation de trois approches de thérapie génique pour le traitement des dysferlinopathies : miniprotéine, compensation et trans-épissage“. Thesis, Evry-Val d'Essonne, 2012. http://www.theses.fr/2012EVRY0035/document.
Der volle Inhalt der QuelleDysferlinopathies are muscular diseases due to mutations in DYSF gene, inducing dysferlin protein deficiency. In this thesis, three therapeutic approaches have been investigated for these pathologies, on cell or mice models. A short transcriptional dysferlin variant has been injected into Bla/J dysferlin deficient mouse model, using AAV8r vector. Muscle fibers of treated animals displayed an increased resistance to mechanical stress without therapeutic benefit. These experiments also pointed out the toxicity of this strategy. A protein compensation approach has been tested using anoctamin 5, known to be involved in pathologies and activities similar to dysferlin’s ones. AAVr mediated Anoctamin 5 overexpression in Bla/J model does not rescue their muscle phenotype. Overexpression of ANO5 does not seem to be a valuable therapeutic strategy for dysferlin deficiency. Dysferlin RNA surgery was evaluated as a possible genetic therapy using Spliceosome-Mediated RNA Trans-splicing (SMaRT). On a Minigene target, SMaRT is able to induce RNA reprogramming by trans-splicing, and produce the corresponding protein. But efficiency is by far decreased in endogenous context and not good enough to restore functional dysferlin in human myoblasts. Moreover, we described proteins resulting from RNA-trans-splicing molecule (RTM) self-expression, limiting the value of SMaRT as therapeutic strategy, especially for dysferlinopathies
Broux, Odile. „Localisation, identification et etude d'un gene responsable d'une forme autosomique recessive de dystrophie musculaire de ceintures (lgmd2e)“. Littoral, 1997. http://www.theses.fr/1997DUNK0008.
Der volle Inhalt der QuelleAllamand, Valérie. „Cartographie genetique fine de la region impliquee dans une forme autosomique recessive de dystrophie musculaire des ceintures (lgmd2a)“. Paris 7, 1995. http://www.theses.fr/1995PA077002.
Der volle Inhalt der QuelleBuchteile zum Thema "LGMDR8"
Leung, Alexander K. C., William Lane M. Robson, Carsten Büning, Johann Ockenga, Janine Büttner, Hartmut Schmidt, Antonio V. Delgado-Escueta et al. „LGMD 1A“. In Encyclopedia of Molecular Mechanisms of Disease, 1167. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_6089.
Der volle Inhalt der QuelleLeung, Alexander K. C., William Lane M. Robson, Carsten Büning, Johann Ockenga, Janine Büttner, Hartmut Schmidt, Antonio V. Delgado-Escueta et al. „LGMD 1B“. In Encyclopedia of Molecular Mechanisms of Disease, 1167. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_6091.
Der volle Inhalt der QuelleLeung, Alexander K. C., William Lane M. Robson, Carsten Büning, Johann Ockenga, Janine Büttner, Hartmut Schmidt, Antonio V. Delgado-Escueta et al. „LGMD 1C“. In Encyclopedia of Molecular Mechanisms of Disease, 1167. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_6092.
Der volle Inhalt der QuelleLeung, Alexander K. C., William Lane M. Robson, Carsten Büning, Johann Ockenga, Janine Büttner, Hartmut Schmidt, Antonio V. Delgado-Escueta et al. „LGMD 2A“. In Encyclopedia of Molecular Mechanisms of Disease, 1167. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_6094.
Der volle Inhalt der QuelleLeung, Alexander K. C., William Lane M. Robson, Carsten Büning, Johann Ockenga, Janine Büttner, Hartmut Schmidt, Antonio V. Delgado-Escueta et al. „LGMD 2B“. In Encyclopedia of Molecular Mechanisms of Disease, 1167–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_6095.
Der volle Inhalt der QuelleLeung, Alexander K. C., William Lane M. Robson, Carsten Büning, Johann Ockenga, Janine Büttner, Hartmut Schmidt, Antonio V. Delgado-Escueta et al. „LGMD 2H“. In Encyclopedia of Molecular Mechanisms of Disease, 1168. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_6097.
Der volle Inhalt der QuelleLeung, Alexander K. C., William Lane M. Robson, Carsten Büning, Johann Ockenga, Janine Büttner, Hartmut Schmidt, Antonio V. Delgado-Escueta et al. „LGMD 2I“. In Encyclopedia of Molecular Mechanisms of Disease, 1168. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_6100.
Der volle Inhalt der QuelleDella Marina, A., U. Schara und B. Schrank. „Kongenitale Muskeldystrophie Typ 1 C (MDC 1C) und Gliedergürtel-Muskeldystrophie 21 (LGMD2I)“. In Klinik und Transition neuromuskulärer Erkrankungen, 171–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44239-5_25.
Der volle Inhalt der QuelleZhang, Yicheng, Jiannan Zhao, Mu Hua, Hao Luan, Mei Liu, Fang Lei, Heriberto Cuayahuitl und Shigang Yue. „O-LGMD: An Opponent Colour LGMD-Based Model for Collision Detection with Thermal Images at Night“. In Lecture Notes in Computer Science, 249–60. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-15934-3_21.
Der volle Inhalt der QuelleMorie, Maho Wielfrid, Iza Marfisi-Schottman und Bi Tra Goore. „LGMD: Optimal Lightweight Metadata Model for Indexing Learning Games“. In Communications in Computer and Information Science, 3–16. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45183-7_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "LGMDR8"
Farias, Igor Braga, Bruno de Mattos Lombardi Badia, Gustavo Carvalho Costa, Roberta Ismael Lacerda Machado, Carolina Maria Marin, Wladimir Bocca Vieira de Rezende Pinto, Paulo Victor Sgobbi de Souza und Acary Souza Bulle Oliveira. „Clinical and genetic profile of Brazilian patients with dysferlinopathies – A retrospective study“. In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.054.
Der volle Inhalt der QuelleFu, Qinbing, und Shigang Yue. „Modelling LGMD2 visual neuron system“. In 2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2015. http://dx.doi.org/10.1109/mlsp.2015.7324313.
Der volle Inhalt der Quelle„LGMD based Neural Network for Automatic Collision Detection“. In 9th International Conference on Informatics in Control, Automation and Robotics. SciTePress - Science and and Technology Publications, 2012. http://dx.doi.org/10.5220/0004044201320140.
Der volle Inhalt der QuelleFu, Qinbing, Cheng Hu, Tian Liu und Shigang Yue. „Collision selective LGMDs neuron models research benefits from a vision-based autonomous micro robot“. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017. http://dx.doi.org/10.1109/iros.2017.8206254.
Der volle Inhalt der QuelleShigang Yue und F. Claire Rind. „Near range path navigation using LGMD visual neural networks“. In 2009 2nd IEEE International Conference on Computer Science and Information Technology. IEEE, 2009. http://dx.doi.org/10.1109/iccsit.2009.5234439.
Der volle Inhalt der QuelleGuopeng Zhang, Chun Zhang und Shigang Yue. „LGMD and DSNs neural networks integration for collision predication“. In 2016 International Joint Conference on Neural Networks (IJCNN). IEEE, 2016. http://dx.doi.org/10.1109/ijcnn.2016.7727330.
Der volle Inhalt der QuelleRodino-Klapac, L. R., E. R. Pozsgai, S. Lewis, D. A. Griffin, A. S. Meadows, K. J. Lehman, K. Church et al. „Safety, β-Sarcoglycan Expression, and Functional Outcomes from Systemic Gene Transfer of rAAVrh74.MHCK7.hSGCB in LGMD2E/R4“. In Abstracts of the 46th Annual Meeting of the Society for Neuropediatrics. Georg Thieme Verlag KG, 2021. http://dx.doi.org/10.1055/s-0041-1739648.
Der volle Inhalt der QuelleHu, Bin, Zhuhong Zhang und Lun Li. „LGMD-BASED VISUAL NEURAL NETWORK FOR DETECTING CROWD ESCAPE BEHAVIOR“. In 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS). IEEE, 2018. http://dx.doi.org/10.1109/ccis.2018.8691354.
Der volle Inhalt der QuelleSilva, A., und C. Santos. „Computational model of the LGMD neuron for automatic collision detection“. In 2013 IEEE 3rd Portuguese Meeting in Bioengineering (ENBENG). IEEE, 2013. http://dx.doi.org/10.1109/enbeng.2013.6518420.
Der volle Inhalt der QuelleSilva, Ana, und Cristina P. Santos. „Modeling disinhibition within a layered structure of the LGMD neuron“. In 2013 International Joint Conference on Neural Networks (IJCNN 2013 - Dallas). IEEE, 2013. http://dx.doi.org/10.1109/ijcnn.2013.6707010.
Der volle Inhalt der Quelle