Auswahl der wissenschaftlichen Literatur zum Thema „Lieb-Robinson bound“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Lieb-Robinson bound" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Lieb-Robinson bound"

1

Matsuta, Takuro, Tohru Koma, and Shu Nakamura. "Improving the Lieb–Robinson Bound for Long-Range Interactions." Annales Henri Poincaré 18, no. 2 (2016): 519–28. http://dx.doi.org/10.1007/s00023-016-0526-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Woods, M. P., and M. B. Plenio. "Dynamical error bounds for continuum discretisation via Gauss quadrature rules—A Lieb-Robinson bound approach." Journal of Mathematical Physics 57, no. 2 (2016): 022105. http://dx.doi.org/10.1063/1.4940436.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Mahoney, Brendan J., and Craig S. Lent. "The Value of the Early-Time Lieb-Robinson Correlation Function for Qubit Arrays." Symmetry 14, no. 11 (2022): 2253. http://dx.doi.org/10.3390/sym14112253.

Der volle Inhalt der Quelle
Annotation:
The Lieb-Robinson correlation function is one way to capture the propagation of quantum entanglement and correlations in many-body systems. We consider arrays of qubits described by the tranverse-field Ising model and examine correlations as the expanding front of entanglement first reaches a particular qubit. Rather than a new bound for the correlation function, we calculate its value, both numerically and analytically. A general analytical result is obtained that enables us to analyze very large arrays of qubits. The velocity of the entanglement front saturates to a constant value, for which
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Strasberg, Philipp, Kavan Modi, and Michalis Skotiniotis. "How long does it take to implement a projective measurement?" European Journal of Physics 43, no. 3 (2022): 035404. http://dx.doi.org/10.1088/1361-6404/ac5a7a.

Der volle Inhalt der Quelle
Annotation:
Abstract According to the Schrödinger equation, a closed quantum system evolves continuously in time. If it is subject to a measurement however, its state changes randomly and discontinuously, which is mathematically described by the projection postulate. But how long does it take for this discontinuous change to occur? Based on simple estimates, whose validity rests solely on the fact that all fundamental forces in nature are finite-ranged, we show that the implementation of a quantum measurement requires a minimum time. This time scales proportionally with the diameter of the quantum mechani
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Moosavian, Ali Hamed, Seyed Sajad Kahani, and Salman Beigi. "Limits of Short-Time Evolution of Local Hamiltonians." Quantum 6 (June 27, 2022): 744. http://dx.doi.org/10.22331/q-2022-06-27-744.

Der volle Inhalt der Quelle
Annotation:
Evolutions of local Hamiltonians in short times are expected to remain local and thus limited. In this paper, we validate this intuition by proving some limitations on short-time evolutions of local time-dependent Hamiltonians. We show that the distribution of the measurement output of short-time (at most logarithmic) evolutions of local Hamiltonians are concentrated and satisfy an isoperimetric inequality. To showcase explicit applications of our results, we study the MAXCUT problem and conclude that quantum annealing needs at least a run-time that scales logarithmically in the problem size t
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Vershynina, Anna, and Elliott Lieb. "Lieb-Robinson bounds." Scholarpedia 8, no. 9 (2013): 31267. http://dx.doi.org/10.4249/scholarpedia.31267.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Doyon, Benjamin. "Hydrodynamic Projections and the Emergence of Linearised Euler Equations in One-Dimensional Isolated Systems." Communications in Mathematical Physics 391, no. 1 (2022): 293–356. http://dx.doi.org/10.1007/s00220-022-04310-3.

Der volle Inhalt der Quelle
Annotation:
AbstractOne of the most profound questions of mathematical physics is that of establishing from first principles the hydrodynamic equations in large, isolated, strongly interacting many-body systems. This involves understanding relaxation at long times under reversible dynamics, determining the space of emergent collective degrees of freedom (the ballistic waves), showing that projection occurs onto them, and establishing their dynamics (the hydrodynamic equations). We make progress in these directions, focussing for simplicity on one-dimensional systems. Under a model-independent definition o
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Islambekov, Umar, Robert Sims, and Gerald Teschl. "Lieb–Robinson Bounds for the Toda Lattice." Journal of Statistical Physics 148, no. 3 (2012): 440–79. http://dx.doi.org/10.1007/s10955-012-0554-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

NACHTERGAELE, BRUNO, BENJAMIN SCHLEIN, ROBERT SIMS, SHANNON STARR, and VALENTIN ZAGREBNOV. "ON THE EXISTENCE OF THE DYNAMICS FOR ANHARMONIC QUANTUM OSCILLATOR SYSTEMS." Reviews in Mathematical Physics 22, no. 02 (2010): 207–31. http://dx.doi.org/10.1142/s0129055x1000393x.

Der volle Inhalt der Quelle
Annotation:
We construct a W*-dynamical system describing the dynamics of a class of anharmonic quantum oscillator lattice systems in the thermodynamic limit. Our approach is based on recently proved Lieb–Robinson bounds for such systems on finite lattices [19].
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Nachtergaele, Bruno, and Robert Sims. "Lieb-Robinson Bounds and the Exponential Clustering Theorem." Communications in Mathematical Physics 265, no. 1 (2006): 119–30. http://dx.doi.org/10.1007/s00220-006-1556-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Dissertationen zum Thema "Lieb-Robinson bound"

1

Islambekov, Umar. "Lieb-Robinson Bounds for the Toda Lattice." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/294026.

Der volle Inhalt der Quelle
Annotation:
We study locality properties of the Toda lattice in terms of Lieb-Robinson bounds. The estimates we prove produce a finite Lieb-Robinson velocity depending on the initial condition. Then we establish analogous results for certain perturbations of the Toda system. Finally, we obtain generalizations of our main results in the setting of the Toda hierarchy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Braida, Arthur. "Analog Quantum Computing for NP-Hard Combinatorial Graph Problems." Electronic Thesis or Diss., Orléans, 2024. http://www.theses.fr/2024ORLE1017.

Der volle Inhalt der Quelle
Annotation:
L'objectif principal de cette thèse est de fournir un éclairage théorique de la complexité du calcul quantique en temps continu (QA et AQC), de la compréhension du phénomène physique (AC) qui conduit à l'échec de l'AQC jusqu'à des preuves de performance de QA en temps court et constant. Pour atteindre cet objectif, nous utilisons différents outils analytiques empruntés à la physique théorique, comme l'analyse perturbative des systèmes quantiques et la borne de Lieb-Robinson sur la vitesse de corrélation dans les systèmes quantiques. La manipulation des graphes et la théorie spectrale des graph
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Lieb-Robinson bound"

1

Bru, J. B., and W. de Siqueira Pedra. Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45784-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory. Springer, 2016.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Bru, J. B., and W. de Siqueira Pedra. Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory. Springer, 2016.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Lieb-Robinson bound"

1

Naaijkens, Pieter. "Lieb-Robinson Bounds." In Quantum Spin Systems on Infinite Lattices. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51458-1_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Naaijkens, Pieter. "Applications of Lieb-Robinson Bounds." In Quantum Spin Systems on Infinite Lattices. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51458-1_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Bru, J. B., and W. de Siqueira Pedra. "Lieb–Robinson Bounds for Multi–commutators." In Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45784-0_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bru, J. B., and W. de Siqueira Pedra. "Lieb–Robinson Bounds for Non-autonomous Dynamics." In Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45784-0_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Bru, J. B., and W. de Siqueira Pedra. "Introduction." In Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45784-0_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bru, J. B., and W. de Siqueira Pedra. "Algebraic Quantum Mechanics." In Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45784-0_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Bru, J. B., and W. de Siqueira Pedra. "Algebraic Setting for Interacting Fermions on the Lattice." In Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45784-0_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bru, J. B., and W. de Siqueira Pedra. "Applications to Conductivity Measures." In Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45784-0_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kliesch, Martin, Christian Gogolin, and Jens Eisert. "Lieb-Robinson Bounds and the Simulation of Time-Evolution of Local Observables in Lattice Systems." In Many-Electron Approaches in Physics, Chemistry and Mathematics. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06379-9_17.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Cheneau, Marc. "Experimental tests of Lieb–Robinson bounds." In The Physics and Mathematics of Elliott Lieb. EMS Press, 2022. http://dx.doi.org/10.4171/90-1/10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Lieb-Robinson bound"

1

NACHTERGAELE, BRUNO. "LIEB–ROBINSON BOUNDS AND THE EXISTENCE OF INFINITE SYSTEM DYNAMICS." In XVIth International Congress on Mathematical Physics. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814304634_0028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

SIMS, ROBERT. "LIEB-ROBINSON BOUNDS AND QUASI-LOCALITY FOR THE DYNAMICS OF MANY-BODY QUANTUM SYSTEMS." In Proceedings of the QMath11 Conference. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814350365_0007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!