Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „LINEAR ITERATIVE CLUSTERING“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "LINEAR ITERATIVE CLUSTERING" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "LINEAR ITERATIVE CLUSTERING"
Zhao, Jiaxing, Ren Bo, Qibin Hou, Ming-Ming Cheng und Paul Rosin. „FLIC: Fast linear iterative clustering with active search“. Computational Visual Media 4, Nr. 4 (27.10.2018): 333–48. http://dx.doi.org/10.1007/s41095-018-0123-y.
Der volle Inhalt der QuelleYan, Qingan, Long Yang, Chao Liang, Huajun Liu, Ruimin Hu und Chunxia Xiao. „Geometrically Based Linear Iterative Clustering for Quantitative Feature Correspondence“. Computer Graphics Forum 35, Nr. 7 (Oktober 2016): 1–10. http://dx.doi.org/10.1111/cgf.12998.
Der volle Inhalt der QuelleMagaraja, Anousouya Devi, Ezhilarasie Rajapackiyam, Vaitheki Kanagaraj, Suresh Joseph Kanagaraj, Ketan Kotecha, Subramaniyaswamy Vairavasundaram, Mayuri Mehta und Vasile Palade. „A Hybrid Linear Iterative Clustering and Bayes Classification-Based GrabCut Segmentation Scheme for Dynamic Detection of Cervical Cancer“. Applied Sciences 12, Nr. 20 (18.10.2022): 10522. http://dx.doi.org/10.3390/app122010522.
Der volle Inhalt der QuelleEun, Hyunjun, Yoonhyung Kim, Chanho Jung und Changick Kim. „Adaptive Sampling of Initial Cluster Centers for Simple Linear Iterative Clustering“. Journal of Korean Institute of Communications and Information Sciences 43, Nr. 1 (31.01.2018): 20–23. http://dx.doi.org/10.7840/kics.2018.43.1.20.
Der volle Inhalt der QuelleOh, Ki-Won, und Kang-Sun Choi. „Acceleration of simple linear iterative clustering using early candidate cluster exclusion“. Journal of Real-Time Image Processing 16, Nr. 4 (31.03.2016): 945–56. http://dx.doi.org/10.1007/s11554-016-0583-1.
Der volle Inhalt der QuelleChoi, Kang-Sun, und Ki-Won Oh. „Subsampling-based acceleration of simple linear iterative clustering for superpixel segmentation“. Computer Vision and Image Understanding 146 (Mai 2016): 1–8. http://dx.doi.org/10.1016/j.cviu.2016.02.018.
Der volle Inhalt der QuelleYamamoto, Takeshi, Katsuhiro Honda, Akira Notsu und Hidetomo Ichihashi. „A Comparative Study on TIBA Imputation Methods in FCMdd-Based Linear Clustering with Relational Data“. Advances in Fuzzy Systems 2011 (2011): 1–10. http://dx.doi.org/10.1155/2011/265170.
Der volle Inhalt der QuelleHuang, Hui-Yu, und Zhe-Hao Liu. „Stereo Matching with Spatiotemporal Disparity Refinement Using Simple Linear Iterative Clustering Segmentation“. Electronics 10, Nr. 6 (18.03.2021): 717. http://dx.doi.org/10.3390/electronics10060717.
Der volle Inhalt der QuelleCong, Jinyu, Benzheng Wei, Yilong Yin, Xiaoming Xi und Yuanjie Zheng. „Performance evaluation of simple linear iterative clustering algorithm on medical image processing“. Bio-Medical Materials and Engineering 24, Nr. 6 (2014): 3231–38. http://dx.doi.org/10.3233/bme-141145.
Der volle Inhalt der QuelleMeenalochani, Manickam, Natarajan Hemavathi und Selvaraj Sudha. „Performance analysis of iterative linear regression-based clustering in wireless sensor networks“. IET Science, Measurement & Technology 14, Nr. 4 (01.06.2020): 423–29. http://dx.doi.org/10.1049/iet-smt.2019.0258.
Der volle Inhalt der QuelleDissertationen zum Thema "LINEAR ITERATIVE CLUSTERING"
Alexandre, Eduardo Barreto. „IFT-SLIC: geração de superpixels com base em agrupamento iterativo linear simples e transformada imagem-floresta“. Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/45/45134/tde-24092017-235915/.
Der volle Inhalt der QuelleImage representation based on superpixels has become indispensable for improving efficiency in Computer Vision systems. Object recognition, segmentation, depth estimation, and body model estimation are some important problems where superpixels can be applied. However, superpixels can influence the quality of the system results in a positive or negative manner, depending on how well they respect the object boundaries in the image. In this work, we propose an iterative method for superpixels generation, known as IFT-SLIC, which is based on sequences of Image Foresting Transforms, starting with a regular grid for seed sampling. A seed pixel recomputation procedure is applied per each iteration, generating connected superpixels with a better adherence to objects borders present in the image. The superpixels obtained by IFT-SLIC structurally correspond to spanning trees rooted at those seeds, that naturally define superpixels as regions of strongly connected pixels. Compared to Simple Linear Iterative Clustering (SLIC), IFT-SLIC considers minimum path costs between pixel and cluster centers rather than their direct distances. Non-monotonically increasing connectivity functions are explored in our IFT-SLIC approach leading to improved performance. Experimental results indicate better superpixel extraction by the proposed approach in comparation to that of SLIC. We also analyze the effectiveness of IFT-SLIC, according to efficiency, and accuracy on an application -- namely sky segmentation. The results show that IFT-SLIC can be competitive to the best state-of-the-art methods and superior to many others, which motivates it\'s further development for different applications.
Neubert, Peer. „Superpixels and their Application for Visual Place Recognition in Changing Environments“. Doctoral thesis, Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-190241.
Der volle Inhalt der QuelleBAGRI, VIKAS. „SIMPLE LINEAR ITERATIVE CLUSTERING AND HAAR WAVELET BASED IMAGE FORGERY DETECTION“. Thesis, 2018. http://dspace.dtu.ac.in:8080/jspui/handle/repository/16358.
Der volle Inhalt der QuelleWang, Wei. „Spatially Adaptive Analysis and Segmentation of Polarimetric SAR Data“. Doctoral thesis, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-218081.
Der volle Inhalt der QuelleQC 20171123
Buchteile zum Thema "LINEAR ITERATIVE CLUSTERING"
Liao, Nannan, Hui Liu, Cheng Li, Xia Ren und Baolong Guo. „Simple Linear Iterative Clustering with Efficiency“. In Advances in Intelligent Information Hiding and Multimedia Signal Processing, 109–17. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1057-9_11.
Der volle Inhalt der QuelleZhang, Houwang, und Yuan Zhu. „KSLIC: K-mediods Clustering Based Simple Linear Iterative Clustering“. In Pattern Recognition and Computer Vision, 519–29. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31723-2_44.
Der volle Inhalt der QuelleDing, Tianyou, Wentao Zhang und Chunning Zhou. „Clustering Effect of Iterative Differential and Linear Trails“. In Information Security and Cryptology, 252–71. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-26553-2_13.
Der volle Inhalt der QuelleChoi, Kang-Sun, und Ki-Won Oh. „Fast Simple Linear Iterative Clustering by Early Candidate Cluster Elimination“. In Pattern Recognition and Image Analysis, 579–86. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19390-8_65.
Der volle Inhalt der QuelleWang, Jing, Zilan Hu und Haixian Wang. „Parcellating Whole Brain for Individuals by Simple Linear Iterative Clustering“. In Neural Information Processing, 131–39. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46675-0_15.
Der volle Inhalt der QuelleSu, Fan, Hui Xu, Guodong Chen, Zhenhua Wang, Lining Sun und Zheng Wang. „Improved Simple Linear Iterative Clustering Algorithm Using HSL Color Space“. In Intelligent Robotics and Applications, 413–25. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27541-9_34.
Der volle Inhalt der QuellePavithra, G., T. C. Manjunath und Dharmanna Lamani. „Detection of Primary Glaucoma in Humans Using Simple Linear Iterative Clustering (SLIC) Algorithm“. In Lecture Notes on Data Engineering and Communications Technologies, 417–28. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24643-3_50.
Der volle Inhalt der QuelleMathews, Arun B., S. U. Aswathy und Ajith Abraham. „Lung CT Image Enhancement Using Improved Linear Iterative Clustering for Tumor Detection in the Juxta Vascular Region“. In Lecture Notes in Networks and Systems, 463–71. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09176-6_53.
Der volle Inhalt der QuelleChowdhary, Chiranji Lal. „Simple Linear Iterative Clustering (SLIC) and Graph Theory-Based Image Segmentation“. In Handbook of Research on Machine Learning Techniques for Pattern Recognition and Information Security, 157–70. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-3299-7.ch010.
Der volle Inhalt der QuelleWang, Shuliang, Wenyan Gan, Deyi Li und Deren Li. „Data Field for Hierarchical Clustering“. In Developments in Data Extraction, Management, and Analysis, 303–24. IGI Global, 2013. http://dx.doi.org/10.4018/978-1-4666-2148-0.ch014.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "LINEAR ITERATIVE CLUSTERING"
Kim, Kwang-Shik, Dongni Zhang, Mun-Cheon Kang und Sung-Jea Ko. „Improved simple linear iterative clustering superpixels“. In 2013 IEEE 17th International Symposium on Consumer Electronics (ISCE). IEEE, 2013. http://dx.doi.org/10.1109/isce.2013.6570216.
Der volle Inhalt der QuelleLi, Shiren, Junwei Huang, Jiayu Shang und Xiongyi Wei. „A robust simple linear iterative clustering algorithm“. In 2017 IEEE 2nd International Conference on Signal and Image Processing (ICSIP). IEEE, 2017. http://dx.doi.org/10.1109/siprocess.2017.8124557.
Der volle Inhalt der QuelleKang-Sun Choi und Ki-Won Oh. „Fast simple linear iterative clustering for superpixel segmentation“. In 2015 IEEE International Conference on Consumer Electronics (ICCE). IEEE, 2015. http://dx.doi.org/10.1109/icce.2015.7066521.
Der volle Inhalt der QuelleWei, Zhifei, Baolong Guo, Cheng Li und Zhijie Chen. „Speeded-up Simple Linear Iterative Clustering Based on Region Homogeneity“. In 2019 2nd International Conference on Safety Produce Informatization (IICSPI). IEEE, 2019. http://dx.doi.org/10.1109/iicspi48186.2019.9096051.
Der volle Inhalt der QuelleAl-Azawi, Razi J., Qussay S. Al-Jubouri und Yousra Abd Mohammed. „Enhanced Algorithm of Superpixel Segmentation Using Simple Linear Iterative Clustering“. In 2019 12th International Conference on Developments in eSystems Engineering (DeSE). IEEE, 2019. http://dx.doi.org/10.1109/dese.2019.00038.
Der volle Inhalt der QuelleMargapuri, Venkat, Trevor Rife, Chaney Courtney, Brandon Schlautman, Kai Zhao und Mitchell Neilsen. „Fractional Vegetation Cover Estimation using Hough Lines and Linear Iterative Clustering“. In 2022 IEEE 5th International Conference on Image Processing Applications and Systems (IPAS). IEEE, 2022. http://dx.doi.org/10.1109/ipas55744.2022.10052996.
Der volle Inhalt der QuelleDoğan, Çağdaş. „Seaweed Growth Detection in Aquaculture Environment Using Simple Linear Iterative Clustering Method“. In The 8th International Conference of Biotechnology, Environment and Engineering Sciences. SRO media, 2020. http://dx.doi.org/10.46617/icbe8001.
Der volle Inhalt der QuelleJunliang, Ma, Wang Xili und Xiao Bing. „Semi-supervised image segmentation with globalized probability of boundary and simple linear iterative clustering“. In 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). IEEE, 2017. http://dx.doi.org/10.1109/fskd.2017.8393374.
Der volle Inhalt der QuelleAravinda, H. L., und M. V. Sudhamani. „Simple Linear Iterative Clustering Based Tumor Segmentation in Liver Region of Abdominal CT-scan“. In 2017 International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT). IEEE, 2017. http://dx.doi.org/10.1109/icraect.2017.18.
Der volle Inhalt der QuelleChen, Yen-Wei, Akira Furukawa, Ayako Taniguchi, Tomoko Tateyama und Shuzo Kanasaki. „Automated assessment of small bowel motility function based on simple linear iterative clustering (SLIC)“. In 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, 2015. http://dx.doi.org/10.1109/fskd.2015.7382209.
Der volle Inhalt der Quelle