Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Linear ODE“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Linear ODE" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Linear ODE"
Deutscher, Joachim, Nicole Gehring und Richard Kern. „Output feedback control of general linear heterodirectional hyperbolic ODE–PDE–ODE systems“. Automatica 95 (September 2018): 472–80. http://dx.doi.org/10.1016/j.automatica.2018.06.021.
Der volle Inhalt der QuelleRadnef, Sorin. „Analytic Solution of Non-Autonomous Linear ODE“. PAMM 6, Nr. 1 (Dezember 2006): 651–52. http://dx.doi.org/10.1002/pamm.200610306.
Der volle Inhalt der QuelleHu, Jie, Huihui Qin und Xiaodan Fan. „Can ODE gene regulatory models neglect time lag or measurement scaling?“ Bioinformatics 36, Nr. 13 (23.04.2020): 4058–64. http://dx.doi.org/10.1093/bioinformatics/btaa268.
Der volle Inhalt der QuelleLorber, Alfred A., Graham F. Carey und Wayne D. Joubert. „ODE Recursions and Iterative Solvers for Linear Equations“. SIAM Journal on Scientific Computing 17, Nr. 1 (Januar 1996): 65–77. http://dx.doi.org/10.1137/0917006.
Der volle Inhalt der QuelleShi-Da, Liu, Fu Zun-Tao, Liu Shi-Kuo, Xin Guo-Jun, Liang Fu-Ming und Feng Bei-Ye. „Solitary Wave in Linear ODE with Variable Coefficients“. Communications in Theoretical Physics 39, Nr. 6 (15.06.2003): 643–46. http://dx.doi.org/10.1088/0253-6102/39/6/643.
Der volle Inhalt der QuelleAyadi, Habib. „Exponential stabilization of an ODE–linear KdV cascaded system with boundary input delay“. IMA Journal of Mathematical Control and Information 37, Nr. 4 (23.09.2020): 1506–23. http://dx.doi.org/10.1093/imamci/dnaa022.
Der volle Inhalt der QuelleImoni, Sunday Obomeviekome, D. I. Lanlege, E. M. Atteh und J. O. Ogbondeminu. „FORMULATION OF BLOCK SCHEMES WITH LINEAR MULTISTEP METHOD FOR THE APPROXIMATION OF FIRST-ORDER IVPS“. FUDMA JOURNAL OF SCIENCES 4, Nr. 3 (24.09.2020): 313–22. http://dx.doi.org/10.33003/fjs-2020-0403-260.
Der volle Inhalt der QuellePOSPÍŠIL, JIŘÍ, ZDENĚK KOLKA, JANA HORSKÁ und JAROMÍR BRZOBOHATÝ. „SIMPLEST ODE EQUIVALENTS OF CHUA'S EQUATIONS“. International Journal of Bifurcation and Chaos 10, Nr. 01 (Januar 2000): 1–23. http://dx.doi.org/10.1142/s0218127400000025.
Der volle Inhalt der QuelleMukhopadhyay, S., R. Picard, S. Trostorff und M. Waurick. „A note on a two-temperature model in linear thermoelasticity“. Mathematics and Mechanics of Solids 22, Nr. 5 (08.12.2015): 905–18. http://dx.doi.org/10.1177/1081286515611947.
Der volle Inhalt der QuelleAksan, Emine. „An application of cubic B-Spline finite element method for the Burgers` equation“. Thermal Science 22, Suppl. 1 (2018): 195–202. http://dx.doi.org/10.2298/tsci170613286a.
Der volle Inhalt der QuelleDissertationen zum Thema "Linear ODE"
D'Augustine, Anthony Frank. „MATLODE: A MATLAB ODE Solver and Sensitivity Analysis Toolbox“. Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/83081.
Der volle Inhalt der QuelleMaster of Science
Albishi, Njwd. „Three-and four-derivative Hermite-Birkhoff-Obrechkoff solvers for stiff ODE“. Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34332.
Der volle Inhalt der QuelleDELLA, MARCA ROSSELLA. „Problemi di controllo in epidemiologia matematica e comportamentale“. Doctoral thesis, Università degli studi di Modena e Reggio Emilia, 2021. http://hdl.handle.net/11380/1237622.
Der volle Inhalt der QuelleDespite major achievements in eliminating long-established infections (as in the very well known case of smallpox), recent decades have seen the continual emergence or re-emergence of infectious diseases (last but not least COVID-19). They are not only threats to global health, but direct and indirect costs generated by human and animal epidemics are responsible for significant economic losses worldwide. Mathematical models of infectious diseases spreading have played a significant role in infection control. On the one hand, they have given an important contribution to the biological and epidemiological understanding of disease outbreak patterns; on the other hand, they have helped to determine how and when to apply control measures in order to quickly and most effectively contain epidemics. Nonetheless, in order to shape local and global public health policies, it is essential to gain a better and more comprehensive understanding of effective actions to control diseases, by finding ways to employ new complexity layers. This was the main focus of the research I have carried out during my PhD; the products of this research are collected and connected in this thesis. However, because out of context, other problems I interested in have been excluded from this collection: they rely in the fields of autoimmune diseases and landscape ecology. We start with an Introduction chapter, which traces the history of epidemiological models, the rationales and the breathtaking incremental advances. We focus on two critical aspects: i) the qualitative and quantitative assessment of control strategies specific to the problem at hand (via e.g. optimal control or threshold policies); ii) the incorporation into the model of the human behavioral changes in response to disease dynamics. In this framework, our studies are inserted and contextualized. Hereafter, to each of them a specific chapter is devoted. The techniques used include the construction of appropriate models given by non-linear ordinary differential equations, their qualitative analysis (via e.g. stability and bifurcation theory), the parameterization and validation with available data. Numerical tests are performed with advanced simulation methods of dynamical systems. As far as optimal control problems are concerned, the formulation follows the classical approach by Pontryagin, while both direct and indirect optimization methods are adopted for the numerical resolution. In Chapter 1, within a basic Susceptible-Infected-Removed model framework, we address the problem of minimizing simultaneously the epidemic size and the eradication time via optimal vaccination or isolation strategies. A two-patches metapopulation epidemic model, describing the dynamics of Susceptibles and Infected in wildlife diseases, is formulated and analyzed in Chapter 2. Here, two types of localized culling strategies are considered and compared: proactive and reactive. Chapter 3 concerns a model for vaccine-preventable childhood diseases transmission, where newborns vaccination follows an imitation game dynamics and is affected by awareness campaigns by the public health system. Vaccination is also incorporated in the model of Chapter 4. Here, it addresses susceptible individuals of any age and depends on the information and rumors about the disease. Further, the vaccine effectiveness is assumed to be partial and waning over time. The last Chapter 5 is devoted to the ongoing pandemic of COVID-19. We build an epidemic model with information-dependent contact and quarantine rates. The model is applied to the Italian case and explicitly incorporates the progressive lockdown restrictions.
Hewitt, Laura L. „General linear methods for the solution of ODEs“. Thesis, University of Bath, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.516948.
Der volle Inhalt der QuelleFarris, Thomas Edward. „Searching for the CP-odd Higgs at a linear collider /“. For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2003. http://uclibs.org/PID/11984.
Der volle Inhalt der QuelleFernandes, Ray Stephen. „Very singular solutions of odd-order PDEs, with linear and nonlinear dispersion“. Thesis, University of Bath, 2008. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.507233.
Der volle Inhalt der QuellePaditz, Ludwig. „Using ClassPad-technology in the education of students of electrical engineering (Fourier- and Laplace-Transformation)“. Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-80814.
Der volle Inhalt der QuellePaditz, Ludwig. „Using ClassPad-technology in the education of students of electricalengineering (Fourier- and Laplace-Transformation)“. Proceedings of the tenth International Conference Models in Developing Mathematics Education. - Dresden : Hochschule für Technik und Wirtschaft, 2009. - S. 469 - 474, 2012. https://slub.qucosa.de/id/qucosa%3A1799.
Der volle Inhalt der QuelleStarkloff, Hans-Jörg, und Ralf Wunderlich. „Stationary solutions of linear ODEs with a randomly perturbed system matrix and additive noise“. Universitätsbibliothek Chemnitz, 2005. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200501335.
Der volle Inhalt der QuelleBarreau, Matthieu. „Stability analysis of coupled ordinary differential systems with a string equation : application to a drilling mechanism“. Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30058.
Der volle Inhalt der QuelleThis thesis is about the stability analysis of a coupled finite dimensional system and an infinite dimensional one. This kind of systems emerges in the physics since it is related to the modeling of structures for instance. The generic analysis of such systems is complex, mainly because of their different nature. Here, the analysis is conducted using different methodologies. First, the recent Quadratic Separation framework is used to deal with the frequency aspect of such systems. Then, a second result is derived using a Lyapunov-based argument. All the results are obtained considering the projections of the infinite dimensional state on a basis of polynomials. It is then possible to take into account the coupling between the two systems. That results in tractable and reliable numerical tests with a moderate conservatism. Moreover, a hierarchy on the stability conditions is shown in the Lyapunov case. The real application to a drilling mechanism is proposed to illustrate the efficiency of the method and it opens new perspectives. For instance, using the notion of practical stability, we show that a PI-controlled drillstring is subject to a limit cycle and that it is possible to estimate its amplitude
Bücher zum Thema "Linear ODE"
Saylor, Paul E. Linear iterative solvers for implicit ode methods. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Den vollen Inhalt der Quelle findenC, Sprott Julien, und ebrary Inc, Hrsg. 2-D quadratic maps and 3-D ODE systems: A rigorous approach. Singapore: World Scientific Pub. Co., 2010.
Den vollen Inhalt der Quelle findenRobert, Hermann. Lie-theoretic ODE numerical analysis, mechanics, and differential systems. Brookline, Mass: Math Sci Press, 1994.
Den vollen Inhalt der Quelle findenDer Diskos von Phaistos: Fremdeinfluss oder kretisches Erbe? Norderstedt: Books on Demand, 2005.
Den vollen Inhalt der Quelle findenManichev, Vladimir, Valentina Glazkova und Кузьмина Анастасия. Numerical methods. The authentic and exact solution of the differential and algebraic equations in SAE systems of SAPR. ru: INFRA-M Academic Publishing LLC., 2016. http://dx.doi.org/10.12737/13138.
Der volle Inhalt der QuelleHung, Pei-Ken. The linear stability of the Schwarzschild spacetime in the harmonic gauge: Odd part. [New York, N.Y.?]: [publisher not identified], 2018.
Den vollen Inhalt der Quelle findenHettlich, Frank. Vorkurs Mathematik: Ein Arbeitsheft zur Vorbereitung auf den Start eines Hochschulstudiums in Mathematik, Informatik einer Naturwissenschaft oder einer Ingenieurwissenschaft. Aachen: Shaker, 2004.
Den vollen Inhalt der Quelle findenZemanian, A. H. Realizability theory for continuous linear systems. New York: Dover, 1995.
Den vollen Inhalt der Quelle findenThe minimal polynomials of unipotent elements in irreducible representations of the classical groups in odd characteristic. Providence, R.I: American Mathematical Society, 2009.
Den vollen Inhalt der Quelle findenAndreischeva, Elena. A collection of practical and laboratory works in higher mathematics. Elements of linear and vector algebra. Workshop. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1089868.
Der volle Inhalt der QuelleBuchteile zum Thema "Linear ODE"
Enns, Richard H., und George C. McGuire. „Linear ODE Models“. In Computer Algebra Recipes, 325–96. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0171-4_7.
Der volle Inhalt der QuelleBalser, Werner. „Formal solutions to non-linear ODE“. In From Divergent Power Series to Analytic Functions, 83–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/bfb0073572.
Der volle Inhalt der QuelleRedaud, Jeanne, Federico Bribiesca-Argomedo und Jean Auriol. „Practical Output Regulation and Tracking for Linear ODE-hyperbolic PDE-ODE Systems“. In Advances in Distributed Parameter Systems, 143–69. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94766-8_7.
Der volle Inhalt der QuelleTadie. „Oscillation Criteria for some Semi-Linear Emden–Fowler ODE“. In Integral Methods in Science and Engineering, 607–15. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16727-5_51.
Der volle Inhalt der QuelleGray, Alfred, Michael Mezzino und Mark A. Pinsky. „Using ODE to Solve Second-Order Linear Differential Equations“. In Introduction to Ordinary Differential Equations with Mathematica®, 303–24. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-2242-2_10.
Der volle Inhalt der QuelleTang, Ying, Christophe Prieur und Antoine Girard. „Singular Perturbation Approach for Linear Coupled ODE-PDE Systems“. In Delays and Interconnections: Methodology, Algorithms and Applications, 3–17. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11554-8_1.
Der volle Inhalt der QuelleDey, Anindya. „Second Order Linear Ode: Solution Techniques & Qualitative Analysis“. In Differential Equations, 284–379. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003205982-6.
Der volle Inhalt der QuelleBotchev, Mike A. „Time-Exact Solution of Large Linear ODE Systems by Block Krylov Subspace Projections“. In Mathematics in Industry, 397–401. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05365-3_55.
Der volle Inhalt der QuelleCoster, C., und P. Habets. „Upper and Lower Solutions in the Theory of Ode Boundary Value Problems: Classical and Recent Results“. In Non Linear Analysis and Boundary Value Problems for Ordinary Differential Equations, 1–78. Vienna: Springer Vienna, 1996. http://dx.doi.org/10.1007/978-3-7091-2680-6_1.
Der volle Inhalt der QuelleRyzhikov, Ivan, Eugene Semenkin und Shakhnaz Akhmedova. „Linear ODE Coefficients and Initial Condition Estimation with Co-operation of Biology Related Algorithms“. In Lecture Notes in Computer Science, 228–35. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41000-5_23.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Linear ODE"
Huo, Guanying, Xin Jiang, Danlei Ye, Cheng Su, Zehong Lu, Bolun Wang und Zhiming Zheng. „Linear ODE Based Geometric Modelling for Compressor Blades“. In 2017 2nd International Conference on Electrical, Automation and Mechanical Engineering (EAME 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/eame-17.2017.53.
Der volle Inhalt der QuelleSaba, David Bou, Federico Bribiesca-Argomedo, Michael Di Loreto und Damien Eberard. „Strictly Proper Control Design for the Stabilization of 2×2 Linear Hyperbolic ODE-PDE-ODE Systems“. In 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019. http://dx.doi.org/10.1109/cdc40024.2019.9030248.
Der volle Inhalt der QuelleMelezhik, A. „Polynomial solutions of the third-order Fuchsian linear ODE“. In International Seminar Day on Diffraction Millennium Workshop. Proceedings. IEEE, 2000. http://dx.doi.org/10.1109/dd.2000.902361.
Der volle Inhalt der QuelleNajafi, Mahmoud, M. Ramezanizadeh, Donald Fincher und H. Massah. „Analysis of a non-linear parabolic ODE via decomposition“. In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4913001.
Der volle Inhalt der QuelleKhatibi, Seyedhamidreza, Guilherme Ozorio Cassol und Stevan Dubljevic. „Linear model predictive control for a cascade ODE-PDE system“. In 2020 American Control Conference (ACC). IEEE, 2020. http://dx.doi.org/10.23919/acc45564.2020.9147269.
Der volle Inhalt der QuelleCristofaro, Andrea, und Francesco Ferrante. „Unknown Input Observer design for coupled PDE/ODE linear systems“. In 2020 59th IEEE Conference on Decision and Control (CDC). IEEE, 2020. http://dx.doi.org/10.1109/cdc42340.2020.9304374.
Der volle Inhalt der QuelleVenkataraman, P. „Solving Inverse ODE Using Bezier Functions“. In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86331.
Der volle Inhalt der QuelleChaparova, Julia V., Eli P. Kalcheva und Miglena N. Koleva. „Numerical investigation of multiple periodic solutions of fourth-order semi-linear ODE“. In APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE '12): Proceedings of the 38th International Conference Applications of Mathematics in Engineering and Economics. AIP, 2012. http://dx.doi.org/10.1063/1.4766780.
Der volle Inhalt der QuelleSerban, Radu, und Alan C. Hindmarsh. „CVODES: The Sensitivity-Enabled ODE Solver in SUNDIALS“. In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85597.
Der volle Inhalt der QuelleAuzinger, Winfried, Petro Pukach, Roksolyana Stolyarchuk und Myroslava Vovk. „Adaptive Numerics for Linear ODE Systems with Time-Dependent Data; Application in Photovoltaics“. In 2020 IEEE XVIth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH). IEEE, 2020. http://dx.doi.org/10.1109/memstech49584.2020.9109442.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Linear ODE"
Vigil, M. G., und D. L. Marchi. Annular precision linear shaped charge flight termination system for the ODES program. Office of Scientific and Technical Information (OSTI), Juni 1994. http://dx.doi.org/10.2172/10165513.
Der volle Inhalt der QuelleGardner C. J. Envelope Parameters for Linear Coupled Motion in Terms of the One-Turn Transfer Matrix. Office of Scientific and Technical Information (OSTI), Juli 1996. http://dx.doi.org/10.2172/1151345.
Der volle Inhalt der QuelleMathias, Lon J., und Ralph M. Bozen. Linear and Star-Branched Siloxy-Silane Polymers: One Pot A-B Polymerization and End-Capping. Fort Belvoir, VA: Defense Technical Information Center, Mai 1992. http://dx.doi.org/10.21236/ada252195.
Der volle Inhalt der QuelleTygert, Mark. Fast Algorithms for the Solution of Eigenfunction Problems for One-Dimensional Self-Adjoint Linear Differential Operators. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2005. http://dx.doi.org/10.21236/ada458901.
Der volle Inhalt der QuelleBaader, Franz, Anees ul Mehdi und Hongkai Liu. Integrate Action Formalisms into Linear Temporal Description Logics. Technische Universität Dresden, 2009. http://dx.doi.org/10.25368/2022.172.
Der volle Inhalt der QuelleHong Qin and Ronald C. Davidson. Self-Similar Nonlinear Dynamical Solutions for One-Component Nonneutral Plasma in a Time-Dependent Linear Focusing Field. Office of Scientific and Technical Information (OSTI), Juli 2011. http://dx.doi.org/10.2172/1029998.
Der volle Inhalt der QuelleZOTOVA, V. A., E. G. SKACHKOVA und T. D. FEOFANOVA. METHODOLOGICAL FEATURES OF APPLICATION OF SIMILARITY THEORY IN THE CALCULATION OF NON-STATIONARY ONE-DIMENSIONAL LINEAR THERMAL CONDUCTIVITY OF A ROD. Science and Innovation Center Publishing House, April 2022. http://dx.doi.org/10.12731/2227-930x-2022-12-1-2-43-53.
Der volle Inhalt der QuelleR.P. Ewing und D.W. Meek. One Line or Two? Perspectives on Piecewise Regression. Office of Scientific and Technical Information (OSTI), Oktober 2006. http://dx.doi.org/10.2172/899336.
Der volle Inhalt der QuelleHanson, Hans, und Nicholas C. Kraus. T-Head Groin Advancements in One-Line Modeling (Genesis/T). Fort Belvoir, VA: Defense Technical Information Center, Januar 2002. http://dx.doi.org/10.21236/ada612482.
Der volle Inhalt der QuelleO'Connell, R. F. Quantum Transport, Noise and Non-Linear Dissipative Effects in One- and Two-Dimensional Systems and Associated Sub-Micron and Nanostructure Devices. Fort Belvoir, VA: Defense Technical Information Center, Januar 1992. http://dx.doi.org/10.21236/ada250895.
Der volle Inhalt der Quelle