Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „LNA CIRCUIT“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "LNA CIRCUIT" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "LNA CIRCUIT"
Malmqvist, R., C. Samuelsson, A. Gustafsson, P. Rantakari, S. Reyaz, T. Vähä-Heikkilä, A. Rydberg, J. Varis, D. Smith und R. Baggen. „A K-Band RF-MEMS-Enabled Reconfigurable and Multifunctional Low-Noise Amplifier Hybrid Circuit“. Active and Passive Electronic Components 2011 (2011): 1–7. http://dx.doi.org/10.1155/2011/284767.
Der volle Inhalt der QuelleMa, Zhenyang, Jiahao Liu, Zhaobin Duan, Chunlei Shi und Shaonan He. „Analysis of Indirect Lightning Effects on Low-Noise Amplifier and Protection Design“. Electronics 12, Nr. 24 (06.12.2023): 4912. http://dx.doi.org/10.3390/electronics12244912.
Der volle Inhalt der QuelleZhang, Yu, Shu Hui Yang und Yin Chao Chen. „Design and Simulation of a 5.8GHz Low Noise Amplifier Used in RFID“. Applied Mechanics and Materials 441 (Dezember 2013): 133–36. http://dx.doi.org/10.4028/www.scientific.net/amm.441.133.
Der volle Inhalt der QuelleChopde, Abhay, Prashik Sadar, Ashutosh Sabale, Piyush Thite und Raghvendra Zarkar. „Design of 2.4 GHz LNA of 400 MHz Bandwidth“. International Journal of Innovative Technology and Exploring Engineering 11, Nr. 3 (30.01.2022): 65–69. http://dx.doi.org/10.35940/ijitee.c9760.0111322.
Der volle Inhalt der QuelleWei, Yiding, Jun Liu, Dengbao Sun, Guodong Su und Junchao Wang. „From Netlist to Manufacturable Layout: An Auto-Layout Algorithm Optimized for Radio Frequency Integrated Circuits“. Symmetry 15, Nr. 6 (16.06.2023): 1272. http://dx.doi.org/10.3390/sym15061272.
Der volle Inhalt der QuelleCastagnola, Juan L., Fortunato C. Dualibe, Agustín M. Laprovitta und Hugo García-Vázquez. „A Novel Design and Optimization Approach for Low Noise Amplifiers (LNA) Based on MOST Scattering Parameters and the gm/ID Ratio“. Electronics 9, Nr. 5 (11.05.2020): 785. http://dx.doi.org/10.3390/electronics9050785.
Der volle Inhalt der QuelleZhou, Shaohua, und Jian Wang. „An Experimental Investigation of the Degradation of CMOS Low-Noise Amplifier Specifications at Different Temperatures“. Micromachines 13, Nr. 8 (06.08.2022): 1268. http://dx.doi.org/10.3390/mi13081268.
Der volle Inhalt der QuelleCharisma, Atik, Nahal Widianto, M. Reza Hidayat und Handoko Rusiana Iskandar. „Low Noise Amplifier Dual Stage dengan Metode π-Junction untuk Long Term Evolution (LTE)“. TELKA - Telekomunikasi Elektronika Komputasi dan Kontrol 8, Nr. 2 (21.11.2022): 116–25. http://dx.doi.org/10.15575/telka.v8n2.116-125.
Der volle Inhalt der QuelleRadic, Jelena, Alena Djugova und Mirjana Videnovic-Misic. „Influence of current reuse LNA circuit parameters on its noise figure“. Serbian Journal of Electrical Engineering 6, Nr. 3 (2009): 439–49. http://dx.doi.org/10.2298/sjee0903439r.
Der volle Inhalt der QuelleSampath Kumar, V., und Kartik Upreti. „Novel low noise amplifier approach for deep brain stimulation“. Journal of Physics: Conference Series 2570, Nr. 1 (01.08.2023): 012033. http://dx.doi.org/10.1088/1742-6596/2570/1/012033.
Der volle Inhalt der QuelleDissertationen zum Thema "LNA CIRCUIT"
Yu, Chuanzhao. „STUDY OF NANOSCALE CMOS DEVICE AND CIRCUIT RELIABILITY“. Doctoral diss., University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3551.
Der volle Inhalt der QuellePh.D.
Department of Electrical and Computer Engineering
Engineering and Computer Science
Electrical Engineering
Green, Matthew Richard. „Development of a temperature insensitive current controlled current source for LNA bias circuit applications“. Thesis, Oxford Brookes University, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.444330.
Der volle Inhalt der QuelleCosta, Arthur Liraneto Torres. „Inductorless balun low-noise amplifier (LNA) for RF wideband application to IEEE 802.22“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2014. http://hdl.handle.net/10183/106442.
Der volle Inhalt der QuelleA new 50 MHz - 1 GHz low-noise amplifier circuit with high linearity for IEEE 802.22 wireless regional area network (WRAN) is presented. It was implemented without any inductor and offers a differential output for balun use. Noise cancelling and linearity boosting techniques were used to improve the amplifier performance in a way they can be separately optimized. Linearity was improved using diode-connected transistors. The amplifier was implemented in a 130 nm CMOS process in a compact 136 m x 71 m area. Simulations are presented for post-layout schematics for two classes of design: one for best linearity, another for best noise figure (NF). When optimized for best linearity, simulation results achieve a voltage gain > 23.7 dB (power gain > 19.1 dB), a NF < 3.6 dB over the entire band (with 2.4 dB min figure), an input third-order intercept point (IIP3) > 3.3 dBm (7.6 dBm max.) and an input power reflection coefficient S11 < -16 dB. When optimized for best NF, it achieves a voltage gain > 24.7 dB (power gain > 19.8 dB), a NF < 2 dB over the entire band, an IIP3 > -0.3 dBm and an S11 < -11 dB. Monte Carlo simulation results confirm low sensitivity to process variations. Also a low sensitivity to temperature within the range -55 to 125 C was observed for Gain, NF and S11. Power consumption is 17.6 mA under a 1.2 V supply.
yasami, saeed. „Design and Evaluation of an Ultra-Low PowerLow Noise Amplifier LNA“. Thesis, Linköping University, Department of Electrical Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-50923.
Der volle Inhalt der QuelleThis master thesis deals with the study of ultra low power Low Noise Amplifier (LNA) for use inmedical implant device. Usually, low power consumption is required for a long battery lifetime andlonger operation. The target technology is 90nm CMOS process.First basic principle of LNA is discussed. Then based on a literature review of LNA design, theproposed LNA is presented in sub-threshold region which reduce power consumption through scalingthe supply voltage and through scaling current.The circuit implementation and simulations is presented to testify the performance of LNA .Besides thepower consumption simulated under the typical supply voltage (1V), it is also measured under someother low supply voltages (down to 0.5V) to investigate the minimum power consumption and theminimum noise figure. Evaluation results show that at a supply voltage of 1V the LNA performs a totalpower consumption of 20mW and a noise of 1dB. Proper performance is achieved with a current ofdown to 200uA and supply voltage of down to 0.45V, and a total power consumption of 200uW
Janse, van Rensburg Christo. „A SiGe BiCMOS LNA for mm-wave applications“. Diss., University of Pretoria, 2012. http://hdl.handle.net/2263/26501.
Der volle Inhalt der QuelleDissertation (MEng)--University of Pretoria, 2012.
Electrical, Electronic and Computer Engineering
unrestricted
Gong, Fei. „Front End Circuit Module Designs for A Digitally Controlled Channelized SDR Receiver Architecture“. The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1322606039.
Der volle Inhalt der QuelleDe, Sousa Marinho Rafael. „Co-design methodology of 60 GHz filter-L-NA“. Thesis, Limoges, 2019. http://www.theses.fr/2019LIMO0095.
Der volle Inhalt der QuelleThis work presents the results and discussions about shared design (co-design)of structures for a RF receptor in millimetric waves. Two structures were mainly studied: TheLNA and the resonator filter. Both structures were developed using novel microelectronic circuitdesign techniques and with the extensive use of CAD software. The circuits were fabricatedusing a0.25μmBiCMOS SiGe:C QuBIC technology from NXP®semiconductors, and themeasurement results are in conformity with the state-of-the-art
Thrivikraman, Tushar. „Analysis and Design of Low-Noise Amplifiers in Silicon-Germanium Hetrojunction Bipolar Technology for Radar and Communication Systems“. Thesis, Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19755.
Der volle Inhalt der QuellePoh, Chung Hang. „Radio frequency circuit design and packaging for silicon-germanium hetrojunction bipolar technology“. Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31662.
Der volle Inhalt der QuelleCommittee Chair: Cressler, John; Committee Member: Laskar, Joy; Committee Member: Papapolymerou, John. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Gaubert, Jean. „Contribution à l'étude d'interfaces analogiques hautes fréquences pour objets communicants à faible coût de fabrication“. Habilitation à diriger des recherches, Université de Provence - Aix-Marseille I, 2007. http://tel.archives-ouvertes.fr/tel-00796512.
Der volle Inhalt der QuelleBücher zum Thema "LNA CIRCUIT"
Constaín Aragón, Alfredo José, und Efraín Bernal Alzate. Electrónica análoga. Bogotá. Colombia: Universidad de La Salle. Ediciones Unisalle, 2009. http://dx.doi.org/10.19052/9789588939551.
Der volle Inhalt der QuelleSánchez Salcedo, Alejandro. Theory on DC Electric Circuits. Bogotá. Colombia: Universidad de La Salle. Ediciones Unisalle, 2016. http://dx.doi.org/10.19052/9789588939933.
Der volle Inhalt der QuelleMorrison, Ralph. Grounding and shielding: Circuits and interference. Hoboken, New Jersey: John Wiley & Sons Inc., 2016.
Den vollen Inhalt der Quelle findenEngineers, Institution of Electrical. IEE proceedings: Circuits, devices, and systems. Stevenage, Herts: IEE, 1989.
Den vollen Inhalt der Quelle findenEngineers, Institution of Electrical. IEE proceedings: Circuits, devices, and systems. Stevenage, Herts: Institution of Electrical Engineers, 1994.
Den vollen Inhalt der Quelle findenRaphael, Pinaud, Tremere Liisa A und De Weerd Peter, Hrsg. Plasticity in the visual system: From genes to circuits. New York: Springer, 2005.
Den vollen Inhalt der Quelle findenRoth, Charles H. Instructor's solutions manual for fundamentals of logic design. Australia: Thomson, 2004.
Den vollen Inhalt der Quelle findenBernal, Enrique Cordero y. Sindicalismo en corto circuito: Novela de actualidad inspirada en los archivos de un periodista. México: Edamex, 1991.
Den vollen Inhalt der Quelle findenMemory, microprocessor, and ASIC. Boca Raton: CRC Press, 2003.
Den vollen Inhalt der Quelle findenChristopher, Bull, Hrsg. Appropriate technology: Tools, choices and implications. San Diego: Academic Press, 1999.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "LNA CIRCUIT"
Nordholt, Ernst H. „Structured LNA design“. In Analog Circuit Design, 47–76. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-47951-6_3.
Der volle Inhalt der QuelleYuan, Jiann-Shiun. „LNA Design for Variability“. In CMOS RF Circuit Design for Reliability and Variability, 55–69. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0884-9_7.
Der volle Inhalt der QuelleMak, Pui-In, und Rui Paulo Martins. „A Full-Band Mobile-TV LNA with Mixed-Voltage ESD Protection in 90-nm CMOS“. In High-/Mixed-Voltage Analog and RF Circuit Techniques for Nanoscale CMOS, 35–54. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-9539-1_3.
Der volle Inhalt der QuelleRahman, Mustafijur, und Ramesh Harjani. „Dual-Path Noise Cancelling LNA“. In Analog Circuits and Signal Processing, 41–56. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21333-6_4.
Der volle Inhalt der QuelleBaltus, Peter. „Put your power into SOA LNAs!“ In Analog Circuit Design, 337–58. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-2983-2_15.
Der volle Inhalt der QuelleLeenaerts, Domine, und Nenad Pavlovic. „Design of wireless LAN circuits in RF-CMOS“. In Analog Circuit Design, 345–63. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-47951-6_15.
Der volle Inhalt der QuelleLeroux, Paul, Michiel Steyaert und K. U. Leuven. „RF-ESD Co-Design for High Performance CMOS LNAs“. In Analog Circuit Design, 207–26. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/0-306-48707-1_9.
Der volle Inhalt der QuelleSelvi, M., K. Thangaramya, M. S. Saranya, K. Kulothungan, S. Ganapathy und A. Kannan. „Classification of Medical Dataset Along with Topic Modeling Using LDA“. In Nanoelectronics, Circuits and Communication Systems, 1–11. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0776-8_1.
Der volle Inhalt der QuelleWang, Mu-Chun, Hsin-Chia Yang und Ren-Hau Yang. „Parasitic Effect Degrading Cascode LNA Circuits with 0.18μm CMOS Process for 2.4GHz RFID Applications“. In Lecture Notes in Electrical Engineering, 561–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21697-8_71.
Der volle Inhalt der QuelleMorabito, Carmela. „Dall’area di Broca al sensorio digitale, trasformazioni antropologiche in atto e ‘cervelli in movimento’: una mente incorporata in un mondo digitalizzato.“ In La narrazione come incontro, 81–101. Florence: Firenze University Press, 2022. http://dx.doi.org/10.36253/979-12-215-0045-5.07.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "LNA CIRCUIT"
Lehmeyer, Bernhard, Michel T. Ivrlac und Josef A. Nossek. „LNA noise parameter measurement“. In 2015 European Conference on Circuit Theory and Design (ECCTD). IEEE, 2015. http://dx.doi.org/10.1109/ecctd.2015.7300071.
Der volle Inhalt der QuelleHamani, Rachid, Cristian Andrei, Bernard Jarry und Mien Lintignat. „LNA circuit design counting the interconnect line parasitics“. In 2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS). IEEE, 2014. http://dx.doi.org/10.1109/icecs.2014.7049994.
Der volle Inhalt der QuelleJato, Yolanda, und Amparo Herrera. „ESD structures impact analysis on a WLAN 802.11a LNA“. In 2007 European Microwave Integrated Circuit Conference. IEEE, 2007. http://dx.doi.org/10.1109/emicc.2007.4412686.
Der volle Inhalt der QuelleJain, Malika, und Ramesh Bharti. „Simulation of Low Power DVCC Based LNA for Wireless Receiver“. In 2021 Devices for Integrated Circuit (DevIC). IEEE, 2021. http://dx.doi.org/10.1109/devic50843.2021.9455835.
Der volle Inhalt der QuelleKobayashi, Kevin W., Charles Campbell, Cathy Lee, Justin Gallagher, John Shust und Andrew Botelho. „A reconfigurable S-/X-band GaN cascode LNA MMIC“. In 2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS). IEEE, 2017. http://dx.doi.org/10.1109/csics.2017.8240424.
Der volle Inhalt der QuelleVidojkovic, Maja, Mihai Sanduleanu, Johan van der Tang, Peter Baltus und Arthur van Roermund. „A broadband, inductorless LNA for multi-standard aplications“. In 2007 European Conference on Circuit Theory and Design (ECCTD 2007). IEEE, 2007. http://dx.doi.org/10.1109/ecctd.2007.4529586.
Der volle Inhalt der QuelleCiccognani, Walter, Franco Giannini, Ernesto Limiti und Patrick E. Longhi. „Full W-Band High-Gain LNA in mHEMT MMIC Technology“. In 2008 European Microwave Integrated Circuit Conference (EuMIC). IEEE, 2008. http://dx.doi.org/10.1109/emicc.2008.4772292.
Der volle Inhalt der QuelleDederer, J., S. Chartier, T. Feger, U. Spitzberg, A. Trasser und H. Schumacher. „Highly compact 3.1 -10.6 GHz UWB LNA in SiGe HBT technology“. In 2007 European Microwave Integrated Circuit Conference. IEEE, 2007. http://dx.doi.org/10.1109/emicc.2007.4412695.
Der volle Inhalt der QuelleTripathy, Dhananjaya, Debasish Nayak, Sudhansu Mohan Biswal, Sanjit Kumar Swain, Biswajit Baral und Satish Kumar Das. „A Low Power LNA using Current Reused Technique for UWB Application“. In 2019 Devices for Integrated Circuit (DevIC). IEEE, 2019. http://dx.doi.org/10.1109/devic.2019.8783936.
Der volle Inhalt der QuelleRezaei, H., E. Abiri und M. R. Salehi. „UWB LNA with out-band interference rejection exploiting multistage matching circuit“. In 2012 IEEE International Conference on Electronics Design, Systems and Applications (ICEDSA). IEEE, 2012. http://dx.doi.org/10.1109/icedsa.2012.6507777.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "LNA CIRCUIT"
Filippo, Agustín, Carlos Guaipatín, Lucas Navarro und Federico Wyss. México y la cadena de valor de los semiconductores: oportunidades de cara al nuevo escenario global. Banco Interamericano de Desarrollo, Juni 2022. http://dx.doi.org/10.18235/0004276.
Der volle Inhalt der QuelleBetancur Ortiz, Idabely, Cristian Arbey Velarde und Celeny Ortiz Restrepo. Situación epidemiológica de las variantes del virus SARS-CoV-2 detectadas en Antioquia, de diciembre 2020 a enero 2022. Instituto Nacional de Salud, Januar 2022. http://dx.doi.org/10.33610/01229907.2022v4n1a4.
Der volle Inhalt der QuelleMorales Granados, Miguel Alfonso, Edwin Gilberto Medina Bejarano, Jhoan Sebastián Jimenéz Rodríguez und Sidney Enrique Muños Pastrana. Caracterización, diseño, mejora y puesta en funcionamiento de tres estaciones didácticas de hidráulica y electrohidráulica para practicas académicas en la ETITC. Escuela Tecnológica Instituto Técnico Central, 2022. http://dx.doi.org/10.55411/2023.23.
Der volle Inhalt der QuelleVargas-Herrera, Hernando, Pamela Andrea Cardozo-Ortiz, Clara Lía Machado-Franco, Carlos Alberto Cadena-Silva, Freddy Hernán Cepeda-López, Aura María Ciceri-Lozano, Carlos Eduardo León-Rincón et al. Reporte de Sistemas de Pago - Junio de 2021. Banco de la República de Colombia, Juli 2021. http://dx.doi.org/10.32468/rept-sist-pag.2021.
Der volle Inhalt der QuellePayment Systems Report - June of 2020. Banco de la República de Colombia, Februar 2021. http://dx.doi.org/10.32468/rept-sist-pag.eng.2020.
Der volle Inhalt der QuellePayment Systems Report - June of 2021. Banco de la República, Februar 2022. http://dx.doi.org/10.32468/rept-sist-pag.eng.2021.
Der volle Inhalt der Quelle