Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Low-Latency applications“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Low-Latency applications" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Low-Latency applications"
Gürel, O., und M. U. Çakır. „XMPP Based Applications under Low Bandwidth and High Latency Conditions“. Lecture Notes on Software Engineering 3, Nr. 4 (2015): 314–17. http://dx.doi.org/10.7763/lnse.2015.v3.211.
Der volle Inhalt der QuelleBrook, Andrew. „Low-latency distributed applications in finance“. Communications of the ACM 58, Nr. 7 (25.06.2015): 42–50. http://dx.doi.org/10.1145/2747303.
Der volle Inhalt der QuelleFiati, Patrick, und K. Adu Boahen Opare. „Network Architecture for Ultra Low Latency Applications“. Communications on Applied Electronics 7, Nr. 37 (30.07.2021): 1–4. http://dx.doi.org/10.5120/cae2021652887.
Der volle Inhalt der QuelleSowmiyaa P, Saranya P, Sabena M, Saranya R und Subhisha K. „LOW-LATENCY APPROXIMATE ADDERIN FPGA“. international journal of engineering technology and management sciences 9, Nr. 2 (2025): 23–25. https://doi.org/10.46647/ijetms.2025.v09i02.005.
Der volle Inhalt der QuelleGomes Lobato, Thiago Henrique, Roland Sottek und Michael Vorlaender. „Implementing neural networks in low-latency audio applications“. Journal of the Acoustical Society of America 153, Nr. 3_supplement (01.03.2023): A105. http://dx.doi.org/10.1121/10.0018318.
Der volle Inhalt der QuelleKavamahanga, Lambert, Theodette Uwimbabazi und Damascene Uwizeyemungu. „Low-Latency and Ultra-Reliable Communication for Industrial 5G“. Journal of Current Trends in Computer Science Research 3, Nr. 4 (18.07.2024): 01–05. http://dx.doi.org/10.33140/jctcsr.03.04.02.
Der volle Inhalt der QuelleLitz, Heiner, Javier Gonzalez, Ana Klimovic und Christos Kozyrakis. „RAIL: Predictable, Low Tail Latency for NVMe Flash“. ACM Transactions on Storage 18, Nr. 1 (28.02.2022): 1–21. http://dx.doi.org/10.1145/3465406.
Der volle Inhalt der QuelleShih, Yuan-Yao, Wei-Ho Chung, Ai-Chun Pang, Te-Chuan Chiu und Hung-Yu Wei. „Enabling Low-Latency Applications in Fog-Radio Access Networks“. IEEE Network 31, Nr. 1 (Januar 2017): 52–58. http://dx.doi.org/10.1109/mnet.2016.1500279nm.
Der volle Inhalt der QuelleBrook, Andrew. „Evolution and Practice: Low-latency Distributed Applications in Finance“. Queue 13, Nr. 4 (April 2015): 40–53. http://dx.doi.org/10.1145/2756506.2770868.
Der volle Inhalt der QuelleBerisa, Tomaz, Kerim Fouli und Martin Maier. „Real-time PON signaling for emerging low-latency applications“. Computer Communications 52 (Oktober 2014): 102–9. http://dx.doi.org/10.1016/j.comcom.2014.06.008.
Der volle Inhalt der QuelleDissertationen zum Thema "Low-Latency applications"
McCaffery, Duncan James. „Supporting Low Latency Interactive Distributed Collaborative Applications in Mobile Environments“. Thesis, Lancaster University, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.524740.
Der volle Inhalt der QuelleLeber, Christian [Verfasser], und Ulrich [Akademischer Betreuer] Brüning. „Efficient hardware for low latency applications / Christian Leber. Betreuer: Ulrich Brüning“. Mannheim : Universitätsbibliothek Mannheim, 2012. http://d-nb.info/1034315552/34.
Der volle Inhalt der QuelleTayarani, Najaran Mahdi. „Transport-level transactions : simple consistency for complex scalable low-latency cloud applications“. Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/54520.
Der volle Inhalt der QuelleScience, Faculty of
Computer Science, Department of
Graduate
Tarassu, Jonas. „GPU-Accelerated Frame Pre-Processing for Use in Low Latency Computer Vision Applications“. Thesis, Linköpings universitet, Informationskodning, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-142019.
Der volle Inhalt der QuelleKy, Joël Roman. „Anomaly Detection and Root Cause Diagnosis for Low-Latency Applications in Time-Varying Capacity Networks“. Electronic Thesis or Diss., Université de Lorraine, 2025. http://www.theses.fr/2025LORR0026.
Der volle Inhalt der QuelleThe evolution of networks has driven the emergence of low-latency (LL) applications such as cloud gaming (CG) and cloud virtual reality (Cloud VR), which demand stringent network conditions, including low latency and high bandwidth. However, time-varying capacity networks introduce impairments such as delays, bandwidth fluctuations, and packet loss, which can significantly degrade user experience on LL applications. This research aims to design methodologies for detecting and diagnosing performance anomalies in LL applications operating over cellular and Wi- Fi networks. To achieve this, realistic experimental testbeds were established to collect datasets that characterize network performance and capture key performance indicators (KPIs) of CG and Cloud VR applications over 4G and Wi-Fi environments. These datasets serve as the foundation for evaluating and developing machine learning-based anomaly detection and diagnostic frameworks. The key contributions of this thesis include the development of CATS, a contrastive learning-based anomaly detection framework capable of efficiently identifying user experience degradation in CG applications while remaining robust to data contamination. Additionally, this research introduces RAID, a two-stage root causes diagnosis framework designed to pinpoint the root causes of performance issues in Cloud VR. RAID demonstrated high efficiency in diagnosing Wi-Fi impairments, even with limited labeled data. The findings of this work advance the fields of anomaly detection and root cause diagnosis, offering actionable insights for network operators to optimize network performance and enhance service reliability to support LL applications, which are set to revolutionize communication technologies and drive innovation across various industries
Yang, Binxu. „On the design of a cost-efficient resource management framework for low latency applications“. Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10053739/.
Der volle Inhalt der QuelleTasiopoulos, A. „On the deployment of low latency network applications over third-party in-network computing resources“. Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10049954/.
Der volle Inhalt der QuelleSchuh, Fabian [Verfasser], und Johannes B. [Akademischer Betreuer] Huber. „Digital Communications for Low Latency and Applications for Constant Envelope Signalling / Fabian Schuh. Gutachter: Johannes B. Huber“. Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2016. http://d-nb.info/1083259539/34.
Der volle Inhalt der QuelleMasoumiyan, Farzaneh. „Low-latency communications for wide area control of energy systems“. Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/135660/1/Farzaneh_Masoumiyan_Thesis.pdf.
Der volle Inhalt der QuelleBrunello, Davide. „L4S in 5G networks“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284554.
Der volle Inhalt der QuelleLow Latency Low Loss Scalable Throughput (L4S) är en teknik som syftar till att ge hög bittakt och låg fördröjning för IP-trafik, vilket också minskar sanno- likheten för paketförluster. För att nå detta mål förlitar det sig på Explicit Cong- estion Notification (ECN), en mekanism för att signalera "congestion", det vill säga köuppbyggnad i nätverket för att undvika att paketet kastas. Congestion- signalerna hanteras sedan vid avsändare och mottagarsida där skalbar anpass- ning justerar bittakten efter rådande omständigheter. I detta arbete har utma- ningarna att implementera L4S i ett 5G-nätverk analyserats. Sedan har L4S implementerats på PDCP lagret i ett 5G-nätverkssammanhang genom att an- vända en proprietär nätverkssimulator. För att utvärdera fördelarna med imple- menteringen har L4S-funktionerna använts för att stödja Augmented Reality (AR) videospelstrafik, med IETF-experimentella standard Self-Clocked Rate Adaptation for Multimedia (SCReAM) för bitrate-kontroll. Resultaten visade att med stöd av L4S upplever videospelstrafiken lägre latens än utan stöd av L4S. Förbättringen av latens kommer med nackdelen av en minskning av bit- takt som dikteras av den inneboende avvägningen mellan bittakt och latens. I vilket fall som helst är kapacitetsminskningen med L4S rimlig, eftersom goda kapacitetsprestanda har uppnåtts även vid hög systembelastning. Vidare har paketförlustfrekvensen reducerats avsevärt tack vare införandet av L4S, och om den används i kombination med en Delay baserad schemaläggare (DBS) har en paketförluster mycket nära noll uppnåtts.
Bücher zum Thema "Low-Latency applications"
Building Low Latency Applications with C++: Develop a Complete Low Latency Trading Ecosystem from Scratch Using Modern C++. Packt Publishing, Limited, 2023.
Den vollen Inhalt der Quelle findenBuilding Low Latency Applications with C++: Develop a Complete Low Latency Trading Ecosystem from Scratch Using Modern C++. de Gruyter GmbH, Walter, 2023.
Den vollen Inhalt der Quelle finden6G-Enabled Edge Intelligence for Ultra -Reliable Low Latency Applications : Vision and Mission: 6g. Independently Published, 2021.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Low-Latency applications"
Lin, Shih-Chun, Tsung-Hui Chang, Eduard Jorswieck und Pin-Hsun Lin. „Applications: Low Latency Communications in 6G“. In Information Theory, Mathematical Optimization, and Their Crossroads in 6G System Design, 249–309. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2016-5_7.
Der volle Inhalt der QuelleFesquet, Laurent, und Jacques Henri Collet. „Low Latency Optical Bus for Multiprocessor Architecture“. In Applications of Photonic Technology 2, 189–94. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9250-8_31.
Der volle Inhalt der QuelleHuang, Scott C. H., Peng-Jun Wan, Xiaohua Jia und Hongwei Du. „Low-Latency Broadcast Scheduling in Ad Hoc Networks“. In Wireless Algorithms, Systems, and Applications, 527–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11814856_50.
Der volle Inhalt der QuelleHoseinyFarahabady, M. Reza, Javid Taheri, Albert Y. Zomaya und Zahir Tari. „Low Latency Execution Guarantee Under Uncertainty in Serverless Platforms“. In Parallel and Distributed Computing, Applications and Technologies, 324–35. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96772-7_30.
Der volle Inhalt der QuellePark, KwangJin, MoonBae Song, Ki-Sik Kong, Sang-Won Kang, Chong-Sun Hwang, Kwang-Sik Chung und SoonYoung Jung. „Effective Low-Latency K-Nearest Neighbor Search Via Wireless Data Broadcast“. In Database Systems for Advanced Applications, 900–909. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11733836_67.
Der volle Inhalt der QuelleKim, Hyun Gon, Doo Ho Choi und Dae Young Kim. „Secure Session Key Exchange for Mobile IP Low Latency Handoffs“. In Computational Science and Its Applications — ICCSA 2003, 230–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44843-8_25.
Der volle Inhalt der QuelleBorghoff, Julia, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knezevic, Lars R. Knudsen, Gregor Leander et al. „PRINCE – A Low-Latency Block Cipher for Pervasive Computing Applications“. In Advances in Cryptology – ASIACRYPT 2012, 208–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34961-4_14.
Der volle Inhalt der QuelleChen, Feng. „Improving IEEE 802.15.4 for Low-Latency Energy-Efficient Industrial Applications“. In Informatik aktuell, 61–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85324-4_7.
Der volle Inhalt der QuelleBaresi, Luciano, Danilo Filgueira Mendonça und Martin Garriga. „Empowering Low-Latency Applications Through a Serverless Edge Computing Architecture“. In Service-Oriented and Cloud Computing, 196–210. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67262-5_15.
Der volle Inhalt der QuelleTian, Shuangfei, Mingyi Yang und Wei Zhang. „A Practical Low Latency System for Cloud-Based VR Applications“. In Communications and Networking, 73–81. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41117-6_7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Low-Latency applications"
Wang, Xu, Christoffer Fougstedt, Lars Svensson und Per Larsson-Edefors. „Unfolded SiBM BCH Decoders for High- Throughput Low-Latency Applications“. In 2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 216–21. IEEE, 2024. http://dx.doi.org/10.1109/isvlsi61997.2024.00048.
Der volle Inhalt der QuelleTabata, Den, Taiga Kobori, Yoshiki Yamaguchi, Ryouhei Tsugami, Toshihito Fujiwara, Tatsuya Fukui und Satoshi Narikawa. „Low-Latency Immersive Display Systems with FPGA for Remote Applications“. In 2025 IEEE 22nd Consumer Communications & Networking Conference (CCNC), 1–2. IEEE, 2025. https://doi.org/10.1109/ccnc54725.2025.10976057.
Der volle Inhalt der QuelleRodrigues, Rafael, Antonio M. G. Pinheiro und Touradj Ebrahimi. „Low-latency immersive content streaming over 5G networks using JPEG XS“. In Applications of Digital Image Processing XLVII, herausgegeben von Andrew G. Tescher und Touradj Ebrahimi, 29. SPIE, 2024. http://dx.doi.org/10.1117/12.3030948.
Der volle Inhalt der QuelleNguyen, Minh N. T., und Van-Su Tran. „An EHF Simulation Model for Low-Latency VLEO Satellite Imagery“. In 2024 IEEE Conference on Antenna Measurements and Applications (CAMA), 1–3. IEEE, 2024. https://doi.org/10.1109/cama62287.2024.10986118.
Der volle Inhalt der QuelleManjunath, H. R., V. S. Gaikwad, T. Kuppuraj, Takveer Singh, D. Little Femilin Jana und Amit Kansal. „Efficient Parallel Processing of Stereoscopic Video Streams for Low-Latency Applications“. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/icccnt61001.2024.10724381.
Der volle Inhalt der QuelleRichter, Thomas, und Siegfried Fößel. „Forward error correction for low-latency transmission of JPEG XS video streams“. In Applications of Digital Image Processing XLVII, herausgegeben von Andrew G. Tescher und Touradj Ebrahimi, 25. SPIE, 2024. http://dx.doi.org/10.1117/12.3027984.
Der volle Inhalt der QuelleRahimi, Mahdi. „MALARIA: Management of Low-Latency Routing Impact on Mix Network Anonymity“. In 2024 22nd International Symposium on Network Computing and Applications (NCA), 193–202. IEEE, 2024. https://doi.org/10.1109/nca61908.2024.00038.
Der volle Inhalt der QuelleMaric, I. „Low latency communications“. In 2013 Information Theory and Applications Workshop (ITA 2013). IEEE, 2013. http://dx.doi.org/10.1109/ita.2013.6502956.
Der volle Inhalt der QuelleSabater, Jordi, Martin Kluge, Sergio Bovelli und Josef Schalk. „Low-power low-latency MAC protocol for aeronautical applications“. In Microtechnologies for the New Millennium, herausgegeben von Thomas Becker, Carles Cané und N. Scott Barker. SPIE, 2007. http://dx.doi.org/10.1117/12.724122.
Der volle Inhalt der QuelleZhu, Xiaoqing, Jiang Zhu, Rong Pan, Mythili Suryanarayana Prabhu und Flavio Bonomi. „Cloud-assisted streaming for low-latency applications“. In 2012 International Conference on Computing, Networking and Communications (ICNC). IEEE, 2012. http://dx.doi.org/10.1109/iccnc.2012.6167565.
Der volle Inhalt der Quelle