Auswahl der wissenschaftlichen Literatur zum Thema „Low-Latency applications“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Low-Latency applications" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Low-Latency applications"

1

Gürel, O., und M. U. Çakır. „XMPP Based Applications under Low Bandwidth and High Latency Conditions“. Lecture Notes on Software Engineering 3, Nr. 4 (2015): 314–17. http://dx.doi.org/10.7763/lnse.2015.v3.211.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Brook, Andrew. „Low-latency distributed applications in finance“. Communications of the ACM 58, Nr. 7 (25.06.2015): 42–50. http://dx.doi.org/10.1145/2747303.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Fiati, Patrick, und K. Adu Boahen Opare. „Network Architecture for Ultra Low Latency Applications“. Communications on Applied Electronics 7, Nr. 37 (30.07.2021): 1–4. http://dx.doi.org/10.5120/cae2021652887.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sowmiyaa P, Saranya P, Sabena M, Saranya R und Subhisha K. „LOW-LATENCY APPROXIMATE ADDERIN FPGA“. international journal of engineering technology and management sciences 9, Nr. 2 (2025): 23–25. https://doi.org/10.46647/ijetms.2025.v09i02.005.

Der volle Inhalt der Quelle
Annotation:
Approximate computing has gained significant attention for applications where absolute precision isnot critical, such as image processing, machine learning, and signal processing. The proposeddesign divides the addition process into two stages: a main sub-adder for high-speed approximatecomputation and an error sub-adder for refining accuracy. By limiting carry propagation in the mainsub-adder, the critical path delay is significantly reduced, achieving low latency. Simultaneously,the error sub-adder operates in parallel to correct errors, ensuring a balance between performanceand precision. Experimental results demonstrate the design’s superior trade-off between speed,accuracy, and energy efficiency compared to conventional adders. The proposed architecture ishighly scalable and suitable for resource-constrained and performance-critical applications, such asreal-time image processing and low-power machine learning accelerators.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Gomes Lobato, Thiago Henrique, Roland Sottek und Michael Vorlaender. „Implementing neural networks in low-latency audio applications“. Journal of the Acoustical Society of America 153, Nr. 3_supplement (01.03.2023): A105. http://dx.doi.org/10.1121/10.0018318.

Der volle Inhalt der Quelle
Annotation:
The use of neural networks is becoming increasingly prevalent due to their ability to represent complex relationships and solve complex problems. However, implementing these models in systems that require low-latency output can be challenging, especially for practitioners who are used to developing their models in controlled environments like Python notebooks. Another issue is the high computational cost of complex models, which limits the minimum possible latency. This paper presents approaches for deploying models in audio applications, discusses the advantages and disadvantages of each approach, and presents strategies to reduce the inference cost of models without significantly sacrificing accuracy, using techniques such as model quantization. To illustrate these methods, example implementations of real-time beamforming deconvolution and real-time music DSP processing are shown.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kavamahanga, Lambert, Theodette Uwimbabazi und Damascene Uwizeyemungu. „Low-Latency and Ultra-Reliable Communication for Industrial 5G“. Journal of Current Trends in Computer Science Research 3, Nr. 4 (18.07.2024): 01–05. http://dx.doi.org/10.33140/jctcsr.03.04.02.

Der volle Inhalt der Quelle
Annotation:
The Internet of Things(IoT) is a planned Internet extension in which everyday objects are outfitted with circuitry, software, sensors, and internet connectivity is required so that data can be received and sent over the Internet. Emerging applications like factory automation and au- tonomous driving necessitate affordable, dependable, and low- latency communication making wireless architecture It’s more convoluted than before. The study’s goal is to understand existing study issues and solutions in connection with 5G-enabled Industrial IoT based on both sectors’ original goals and commitments. The fifty generation mobile technologies naturally provide these (These are naturally provided by 5G mobile technologies.), making it a strong choice for enabling scenarios for Industrial IoT(IIoT). This article discusses Low Latency and Ultra-Reliable, one of the pillar elements of 5G wireless systems introduced by 3GPP in release 15 and beyond. It focuses on how to allow Low-Latency and Ultra-Reliable by combining metadata and data encoding approaches. Aside from evaluating, current issues and solutions, the study intends to get to a decision about the current research gaps by providing comparisons that are applicable to any of these subjects (in- relation to fifty-generation enabled-IIoT). Finally, it analyzes URLLC difficulties by assessing packet transmission reliability based on the packet time frame and the reliability impairment impacting communication dependability
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Litz, Heiner, Javier Gonzalez, Ana Klimovic und Christos Kozyrakis. „RAIL: Predictable, Low Tail Latency for NVMe Flash“. ACM Transactions on Storage 18, Nr. 1 (28.02.2022): 1–21. http://dx.doi.org/10.1145/3465406.

Der volle Inhalt der Quelle
Annotation:
Flash-based storage is replacing disk for an increasing number of data center applications, providing orders of magnitude higher throughput and lower average latency. However, applications also require predictable storage latency. Existing Flash devices fail to provide low tail read latency in the presence of write operations. We propose two novel techniques to address SSD read tail latency, including Redundant Array of Independent LUNs (RAIL) which avoids serialization of reads behind user writes as well as latency-aware hot-cold separation (HC) which improves write throughput while maintaining low tail latency. RAIL leverages the internal parallelism of modern Flash devices and allocates data and parity pages to avoid reads getting stuck behind writes. We implement RAIL in the Linux Kernel as part of the LightNVM Flash translation layer and show that it can reduce read tail latency by 7× at the 99.99th percentile, while reducing relative bandwidth by only 33%.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Shih, Yuan-Yao, Wei-Ho Chung, Ai-Chun Pang, Te-Chuan Chiu und Hung-Yu Wei. „Enabling Low-Latency Applications in Fog-Radio Access Networks“. IEEE Network 31, Nr. 1 (Januar 2017): 52–58. http://dx.doi.org/10.1109/mnet.2016.1500279nm.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Brook, Andrew. „Evolution and Practice: Low-latency Distributed Applications in Finance“. Queue 13, Nr. 4 (April 2015): 40–53. http://dx.doi.org/10.1145/2756506.2770868.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Berisa, Tomaz, Kerim Fouli und Martin Maier. „Real-time PON signaling for emerging low-latency applications“. Computer Communications 52 (Oktober 2014): 102–9. http://dx.doi.org/10.1016/j.comcom.2014.06.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Dissertationen zum Thema "Low-Latency applications"

1

McCaffery, Duncan James. „Supporting Low Latency Interactive Distributed Collaborative Applications in Mobile Environments“. Thesis, Lancaster University, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.524740.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Leber, Christian [Verfasser], und Ulrich [Akademischer Betreuer] Brüning. „Efficient hardware for low latency applications / Christian Leber. Betreuer: Ulrich Brüning“. Mannheim : Universitätsbibliothek Mannheim, 2012. http://d-nb.info/1034315552/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Tayarani, Najaran Mahdi. „Transport-level transactions : simple consistency for complex scalable low-latency cloud applications“. Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/54520.

Der volle Inhalt der Quelle
Annotation:
The classical move from single-server applications to scalable cloud services is to split the application state along certain dimensions into smaller partitions independently absorbable by a separate server in terms of size and load. Maintaining data consistency in the face of operations that cross partition boundaries imposes unwanted complexity on the application. While for most applications many ideal partitioning schemes readily exist, First-Person Shooter (FPS) games and Relational Database Management Systems (RDBMS) are instances of applications whose state can’t be trivially partitioned. For any partitioning scheme there exists an FPS/RDBMS workload that results in frequent cross-partition operations. In this thesis we propose that it is possible and effective to provide unpartitionable applications with a generic communication infrastructure that enforces strong consistency of the application’s data to simplify cross-partition communications. Using this framework the application can use a sub-optimal partitioning mechanism without having to worry about crossing boundaries. We apply our thesis to take a head-on approach at scaling our target applications. We build three scalable systems with competitive performances, used for storing data in a key/value datastore, scaling fast-paced FPS games to epic sized battles consisting of hundreds of players, and a scalable full-SQL compliant database used for storing tens of millions of items.
Science, Faculty of
Computer Science, Department of
Graduate
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Tarassu, Jonas. „GPU-Accelerated Frame Pre-Processing for Use in Low Latency Computer Vision Applications“. Thesis, Linköpings universitet, Informationskodning, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-142019.

Der volle Inhalt der Quelle
Annotation:
The attention for low latency computer vision and video processing applications are growing for every year, not least the VR and AR applications. In this thesis the Contrast Limited Adaptive Histogram Equalization (CLAHE) and Radial Dis- tortion algorithms are implemented using both CUDA and OpenCL to determine whether these type of algorithms are suitable for implementations aimed to run at GPUs when low latency is of utmost importance. The result is an implemen- tation of the block versions of the CLAHE algorithm which utilizes the built in interpolation hardware that resides on the GPU to reduce block effects and an im- plementation of the Radial Distortion algorithm that corrects a 1920x1080 frame in 0.3 ms. Further this thesis concludes that the GPU-platform might be a good choice if the data to be processed can be transferred to and possibly from the GPU fast enough and that the choice of compute API mostly is a matter of taste.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ky, Joël Roman. „Anomaly Detection and Root Cause Diagnosis for Low-Latency Applications in Time-Varying Capacity Networks“. Electronic Thesis or Diss., Université de Lorraine, 2025. http://www.theses.fr/2025LORR0026.

Der volle Inhalt der Quelle
Annotation:
L'évolution des réseaux a conduit à l'émergence d'applications à faible latence (FL) telles que le cloud gaming (CG) et la réalité virtuelle basée sur le cloud (Cloud VR), qui exigent des conditions réseau strictes, notamment une faible latence et une bande passante élevée. Cependant, les réseaux à capacité variable introduisent des dégradations, telles que du délai, des fluctuations de bande passante et des pertes de paquets, qui peuvent significativement altérer l'expérience utilisateur sur les applications FL. Cette thèse vise à concevoir des méthodologies pour détecter et diagnostiquer les anomalies de performance des applications FL fonctionnant sur des réseaux cellulaires et Wi-Fi. Pour atteindre cet objectif, des bancs d'essai expérimentaux réalistes ont été mis en place pour collecter des bases de données caractérisant les performances du réseau et capturant les indicateurs clés de performance (KPI) des applications CG et Cloud VR dans des environnements 4G et Wi-Fi. Ces données constituent la base de l'évaluation et du développement d'algorithmes de détection d'anomalies et de diagnostic basés sur l'apprentissage automatique. Les principales contributions de cette thèse incluent le développement de CATS, une solution de détection d'anomalies basé sur l'apprentissage contrastif, capable d'identifier efficacement les dégradations de l'expérience utilisateur dans les applications CG tout en restant robuste face à la contamination des données. De plus, cette thèse introduit RAID, un système de diagnostic en deux étapes conçu pour identifier les causes racines des problèmes de performance dans le Cloud VR. RAID a démontré une grande efficacité dans le diagnostic des dégradations Wi-Fi, même avec un nombre limité de données annotées. Les résultats de ce travail font progresser les domaines de la détection d'anomalies et du diagnostic des causes racines, offrant des perspectives concrètes aux opérateurs de réseaux pour optimiser les performances de leurs réseaux et améliorer la fiabilité des services et mieux supporter les applications FL, qui sont appelées à révolutionner les technologies de communication et à stimuler l'innovation dans de nombreuses industries
The evolution of networks has driven the emergence of low-latency (LL) applications such as cloud gaming (CG) and cloud virtual reality (Cloud VR), which demand stringent network conditions, including low latency and high bandwidth. However, time-varying capacity networks introduce impairments such as delays, bandwidth fluctuations, and packet loss, which can significantly degrade user experience on LL applications. This research aims to design methodologies for detecting and diagnosing performance anomalies in LL applications operating over cellular and Wi- Fi networks. To achieve this, realistic experimental testbeds were established to collect datasets that characterize network performance and capture key performance indicators (KPIs) of CG and Cloud VR applications over 4G and Wi-Fi environments. These datasets serve as the foundation for evaluating and developing machine learning-based anomaly detection and diagnostic frameworks. The key contributions of this thesis include the development of CATS, a contrastive learning-based anomaly detection framework capable of efficiently identifying user experience degradation in CG applications while remaining robust to data contamination. Additionally, this research introduces RAID, a two-stage root causes diagnosis framework designed to pinpoint the root causes of performance issues in Cloud VR. RAID demonstrated high efficiency in diagnosing Wi-Fi impairments, even with limited labeled data. The findings of this work advance the fields of anomaly detection and root cause diagnosis, offering actionable insights for network operators to optimize network performance and enhance service reliability to support LL applications, which are set to revolutionize communication technologies and drive innovation across various industries
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Yang, Binxu. „On the design of a cost-efficient resource management framework for low latency applications“. Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10053739/.

Der volle Inhalt der Quelle
Annotation:
The ability to offer low latency communications is one of the critical design requirements for the upcoming 5G era. The current practice for achieving low latency is to overprovision network resources (e.g., bandwidth and computing resources). However, this approach is not cost-efficient, and cannot be applied in large-scale. To solve this, more cost-efficient resource management is required to dynamically and efficiently exploit network resources to guarantee low latencies. The advent of network virtualization provides novel opportunities in achieving cost-efficient low latency communications. It decouples network resources from physical machines through virtualization, and groups resources in the form of virtual machines (VMs). By doing so, network resources can be flexibly increased at any network locations through VM auto-scaling to alleviate network delays due to lack of resources. At the same time, the operational cost can be largely reduced by shutting down low-utilized VMs (e.g., energy saving). Also, network virtualization enables the emerging concept of mobile edge-computing, whereby VMs can be utilized to host low latency applications at the network edge to shorten communication latency. Despite these advantages provided by virtualization, a key challenge is the optimal resource management of different physical and virtual resources for low latency communications. This thesis addresses the challenge by deploying a novel cost-efficient resource management framework that aims to solve the cost-efficient design of 1) low latency communication infrastructures; 2) dynamic resource management for low latency applications; and 3) fault-tolerant resource management. Compared to the current practices, the proposed framework achieves 80% of deployment cost reduction for the design of low latency communication infrastructures; continuously saves up to 33% of operational cost through dynamic resource management while always achieving low latencies; and succeeds in providing fault tolerance to low latency communications with a guaranteed operational cost.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Tasiopoulos, A. „On the deployment of low latency network applications over third-party in-network computing resources“. Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10049954/.

Der volle Inhalt der Quelle
Annotation:
An increasing number of Low Latency Applications (LLAs) in the entertainment (Virtual/Augmented Reality), Internet-of-Things (IoT), and automotive domains require response times that challenge the traditional application provisioning process into distant data centres. At the same time, there is a trend in deploying In-Network Computing Resources (INCRs) closer to end users either in the form of network equipment, with capabilities of performing general-purpose computations, and/or in the form of commercial off-the-self “data centres in a box”, i.e., cloudlets, placed at different locations of Internet Service Providers (ISPs). That is, INCRs extend cloud computing at the edge and middle-tier locations of the network, providing significantly smaller response times than those achieved by the current “client-to-cloud” network model. In this thesis, we argue about the necessity of exploiting INCRs for application provisioning with the purpose of improving LLAs’ Quality of Service (QoS) by essentially deploying applications closer to end users. To this end, this thesis investigates the deployment of LLAs over INCRs under fixed, mobile, and disrupted user connectivity environments. In order to fully reap the benefits of INCRs, we develop for each connectivity scenario algorithmic frameworks that are centred around the concept of a market, where LLAs lease existing INCRs. The proposed frameworks take into account the particular characteristics of INCRs, such as their limited capacity in hosting application instances, and LLAs, by addressing the number of instances each application should deploy at each computing resource over time. Furthermore, since typically the smooth operation of network applications is supported by Network Functions, such as load balancers, firewalls etc., we consider the deployment of complementary Virtual Network Functions for backing LLAs’ provisioning over INCRs. Overall, the key goal of this thesis is the investigation of using an enhanced Internet through INCRs as the communication platform for LLAs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Schuh, Fabian [Verfasser], und Johannes B. [Akademischer Betreuer] Huber. „Digital Communications for Low Latency and Applications for Constant Envelope Signalling / Fabian Schuh. Gutachter: Johannes B. Huber“. Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2016. http://d-nb.info/1083259539/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Masoumiyan, Farzaneh. „Low-latency communications for wide area control of energy systems“. Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/135660/1/Farzaneh_Masoumiyan_Thesis.pdf.

Der volle Inhalt der Quelle
Annotation:
This project provides reliable and low-latency communications for wide area control in smart grid. For this purpose, a priority differentiation approach is presented. It is embedded with an application-layer acknowledgment mechanism for reliable transmission of time-critical data with high priority.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Brunello, Davide. „L4S in 5G networks“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284554.

Der volle Inhalt der Quelle
Annotation:
Low Latency Low Loss Scalable Throughput (L4S) is a technology which aims to provide high throughput and low latency for the IP traffic, lowering also the probability of packet loss. To reach this goal, it relies on Explicit Con- gestion Notification (ECN), a mechanism to signal congestion in the network avoiding packets drop. The congestion signals are then managed at sender and receiver side thanks to scalable congestion control algorithms. Initially, in this work the challenges to implement L4S in a 5G network have been analyzed. Using a proprietary state-of-the-art network simulator, L4S have been imple- mented at the Packed Data Convergence Protocol layer in a 5G network. The 5G network scenario represents a context where the physical layer has a carrier frequency of 600 MHz, a transmission bandwidth of 9 MHz, and the proto- col stack follows the New Radio (NR) specifications. L4S has been adopted to support Augmented Reality (AR) video gaming traffic, using the IETF ex- perimental standard Self-Clocked Rate Adaptation for Multimedia (SCReAM) for congestion control. The results showed that when supported by L4S, the video gaming traffic experiences lower delay than without L4S support. The improvement on latency comes with an intrinsic trade-off between throughput and latency. In all the cases analyzed, L4S yields to average application layer throughput above the minimum requirements of high-rate latency-critical ap- plication, even at high system load. Furthermore, the packet loss rate has been significantly reduced thanks to the introduction of L4S, and if used in combi- nation with a Delay Based Scheduler (DBS), a packet loss rate very close to zero has been reached.
Low Latency Low Loss Scalable Throughput (L4S) är en teknik som syftar till att ge hög bittakt och låg fördröjning för IP-trafik, vilket också minskar sanno- likheten för paketförluster. För att nå detta mål förlitar det sig på Explicit Cong- estion Notification (ECN), en mekanism för att signalera "congestion", det vill säga köuppbyggnad i nätverket för att undvika att paketet kastas. Congestion- signalerna hanteras sedan vid avsändare och mottagarsida där skalbar anpass- ning justerar bittakten efter rådande omständigheter. I detta arbete har utma- ningarna att implementera L4S i ett 5G-nätverk analyserats. Sedan har L4S implementerats på PDCP lagret i ett 5G-nätverkssammanhang genom att an- vända en proprietär nätverkssimulator. För att utvärdera fördelarna med imple- menteringen har L4S-funktionerna använts för att stödja Augmented Reality (AR) videospelstrafik, med IETF-experimentella standard Self-Clocked Rate Adaptation for Multimedia (SCReAM) för bitrate-kontroll. Resultaten visade att med stöd av L4S upplever videospelstrafiken lägre latens än utan stöd av L4S. Förbättringen av latens kommer med nackdelen av en minskning av bit- takt som dikteras av den inneboende avvägningen mellan bittakt och latens. I vilket fall som helst är kapacitetsminskningen med L4S rimlig, eftersom goda kapacitetsprestanda har uppnåtts även vid hög systembelastning. Vidare har paketförlustfrekvensen reducerats avsevärt tack vare införandet av L4S, och om den används i kombination med en Delay baserad schemaläggare (DBS) har en paketförluster mycket nära noll uppnåtts.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Bücher zum Thema "Low-Latency applications"

1

Building Low Latency Applications with C++: Develop a Complete Low Latency Trading Ecosystem from Scratch Using Modern C++. Packt Publishing, Limited, 2023.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Building Low Latency Applications with C++: Develop a Complete Low Latency Trading Ecosystem from Scratch Using Modern C++. de Gruyter GmbH, Walter, 2023.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

6G-Enabled Edge Intelligence for Ultra -Reliable Low Latency Applications : Vision and Mission: 6g. Independently Published, 2021.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Low-Latency applications"

1

Lin, Shih-Chun, Tsung-Hui Chang, Eduard Jorswieck und Pin-Hsun Lin. „Applications: Low Latency Communications in 6G“. In Information Theory, Mathematical Optimization, and Their Crossroads in 6G System Design, 249–309. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2016-5_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Fesquet, Laurent, und Jacques Henri Collet. „Low Latency Optical Bus for Multiprocessor Architecture“. In Applications of Photonic Technology 2, 189–94. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9250-8_31.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Huang, Scott C. H., Peng-Jun Wan, Xiaohua Jia und Hongwei Du. „Low-Latency Broadcast Scheduling in Ad Hoc Networks“. In Wireless Algorithms, Systems, and Applications, 527–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11814856_50.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

HoseinyFarahabady, M. Reza, Javid Taheri, Albert Y. Zomaya und Zahir Tari. „Low Latency Execution Guarantee Under Uncertainty in Serverless Platforms“. In Parallel and Distributed Computing, Applications and Technologies, 324–35. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96772-7_30.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Park, KwangJin, MoonBae Song, Ki-Sik Kong, Sang-Won Kang, Chong-Sun Hwang, Kwang-Sik Chung und SoonYoung Jung. „Effective Low-Latency K-Nearest Neighbor Search Via Wireless Data Broadcast“. In Database Systems for Advanced Applications, 900–909. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11733836_67.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kim, Hyun Gon, Doo Ho Choi und Dae Young Kim. „Secure Session Key Exchange for Mobile IP Low Latency Handoffs“. In Computational Science and Its Applications — ICCSA 2003, 230–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44843-8_25.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Borghoff, Julia, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knezevic, Lars R. Knudsen, Gregor Leander et al. „PRINCE – A Low-Latency Block Cipher for Pervasive Computing Applications“. In Advances in Cryptology – ASIACRYPT 2012, 208–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34961-4_14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Chen, Feng. „Improving IEEE 802.15.4 for Low-Latency Energy-Efficient Industrial Applications“. In Informatik aktuell, 61–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85324-4_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Baresi, Luciano, Danilo Filgueira Mendonça und Martin Garriga. „Empowering Low-Latency Applications Through a Serverless Edge Computing Architecture“. In Service-Oriented and Cloud Computing, 196–210. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67262-5_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Tian, Shuangfei, Mingyi Yang und Wei Zhang. „A Practical Low Latency System for Cloud-Based VR Applications“. In Communications and Networking, 73–81. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41117-6_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Low-Latency applications"

1

Wang, Xu, Christoffer Fougstedt, Lars Svensson und Per Larsson-Edefors. „Unfolded SiBM BCH Decoders for High- Throughput Low-Latency Applications“. In 2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 216–21. IEEE, 2024. http://dx.doi.org/10.1109/isvlsi61997.2024.00048.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tabata, Den, Taiga Kobori, Yoshiki Yamaguchi, Ryouhei Tsugami, Toshihito Fujiwara, Tatsuya Fukui und Satoshi Narikawa. „Low-Latency Immersive Display Systems with FPGA for Remote Applications“. In 2025 IEEE 22nd Consumer Communications & Networking Conference (CCNC), 1–2. IEEE, 2025. https://doi.org/10.1109/ccnc54725.2025.10976057.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Rodrigues, Rafael, Antonio M. G. Pinheiro und Touradj Ebrahimi. „Low-latency immersive content streaming over 5G networks using JPEG XS“. In Applications of Digital Image Processing XLVII, herausgegeben von Andrew G. Tescher und Touradj Ebrahimi, 29. SPIE, 2024. http://dx.doi.org/10.1117/12.3030948.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Nguyen, Minh N. T., und Van-Su Tran. „An EHF Simulation Model for Low-Latency VLEO Satellite Imagery“. In 2024 IEEE Conference on Antenna Measurements and Applications (CAMA), 1–3. IEEE, 2024. https://doi.org/10.1109/cama62287.2024.10986118.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Manjunath, H. R., V. S. Gaikwad, T. Kuppuraj, Takveer Singh, D. Little Femilin Jana und Amit Kansal. „Efficient Parallel Processing of Stereoscopic Video Streams for Low-Latency Applications“. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/icccnt61001.2024.10724381.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Richter, Thomas, und Siegfried Fößel. „Forward error correction for low-latency transmission of JPEG XS video streams“. In Applications of Digital Image Processing XLVII, herausgegeben von Andrew G. Tescher und Touradj Ebrahimi, 25. SPIE, 2024. http://dx.doi.org/10.1117/12.3027984.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Rahimi, Mahdi. „MALARIA: Management of Low-Latency Routing Impact on Mix Network Anonymity“. In 2024 22nd International Symposium on Network Computing and Applications (NCA), 193–202. IEEE, 2024. https://doi.org/10.1109/nca61908.2024.00038.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Maric, I. „Low latency communications“. In 2013 Information Theory and Applications Workshop (ITA 2013). IEEE, 2013. http://dx.doi.org/10.1109/ita.2013.6502956.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sabater, Jordi, Martin Kluge, Sergio Bovelli und Josef Schalk. „Low-power low-latency MAC protocol for aeronautical applications“. In Microtechnologies for the New Millennium, herausgegeben von Thomas Becker, Carles Cané und N. Scott Barker. SPIE, 2007. http://dx.doi.org/10.1117/12.724122.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zhu, Xiaoqing, Jiang Zhu, Rong Pan, Mythili Suryanarayana Prabhu und Flavio Bonomi. „Cloud-assisted streaming for low-latency applications“. In 2012 International Conference on Computing, Networking and Communications (ICNC). IEEE, 2012. http://dx.doi.org/10.1109/iccnc.2012.6167565.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie