Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „LSTM Temporel“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "LSTM Temporel" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "LSTM Temporel"
Liu, Jun, Tong Zhang, Guangjie Han und Yu Gou. „TD-LSTM: Temporal Dependence-Based LSTM Networks for Marine Temperature Prediction“. Sensors 18, Nr. 11 (06.11.2018): 3797. http://dx.doi.org/10.3390/s18113797.
Der volle Inhalt der QuelleBaddar, Wissam J., und Yong Man Ro. „Mode Variational LSTM Robust to Unseen Modes of Variation: Application to Facial Expression Recognition“. Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 3215–23. http://dx.doi.org/10.1609/aaai.v33i01.33013215.
Der volle Inhalt der QuelleD, Usha, Jesmalar L, Noorbasha Nagoor Meeravali, Mihirkumar B.Suthar, Rajeswari J, Pothumarthi Sridevi und Vengatesh T. „Enhanced Dengue Fever Prediction in India through Deep Learning with Spatially Attentive LSTMs“. Cuestiones de Fisioterapia 54, Nr. 2 (10.01.2025): 3804–12. https://doi.org/10.48047/v3dm7y10.
Der volle Inhalt der QuelleTao, Hong, Yue Deng, Yunqiu Xiang und Long Liu. „Performance of long short-term memory networks in predicting athlete injury risk“. Journal of Computational Methods in Sciences and Engineering 24, Nr. 4-5 (14.08.2024): 3155–71. http://dx.doi.org/10.3233/jcm-247563.
Der volle Inhalt der QuelleMajeed, Mokhalad A., Helmi Zulhaidi Mohd Shafri, Zed Zulkafli und Aimrun Wayayok. „A Deep Learning Approach for Dengue Fever Prediction in Malaysia Using LSTM with Spatial Attention“. International Journal of Environmental Research and Public Health 20, Nr. 5 (25.02.2023): 4130. http://dx.doi.org/10.3390/ijerph20054130.
Der volle Inhalt der QuelleLin, Fei, Yudi Xu, Yang Yang und Hong Ma. „A Spatial-Temporal Hybrid Model for Short-Term Traffic Prediction“. Mathematical Problems in Engineering 2019 (14.01.2019): 1–12. http://dx.doi.org/10.1155/2019/4858546.
Der volle Inhalt der QuelleChen, Wantong, Hailong Wu und Shiyu Ren. „CM-LSTM Based Spectrum Sensing“. Sensors 22, Nr. 6 (16.03.2022): 2286. http://dx.doi.org/10.3390/s22062286.
Der volle Inhalt der QuelleTang, Qicheng, Mengning Yang und Ying Yang. „ST-LSTM: A Deep Learning Approach Combined Spatio-Temporal Features for Short-Term Forecast in Rail Transit“. Journal of Advanced Transportation 2019 (06.02.2019): 1–8. http://dx.doi.org/10.1155/2019/8392592.
Der volle Inhalt der QuelleGeng, Yue, Lingling Su, Yunhong Jia und Ce Han. „Seismic Events Prediction Using Deep Temporal Convolution Networks“. Journal of Electrical and Computer Engineering 2019 (02.04.2019): 1–14. http://dx.doi.org/10.1155/2019/7343784.
Der volle Inhalt der QuelleVaseekaran S, Pragadeeswaran S und Mrs S Janani. „Brain Tumour Prediction Using Temporal Memory“. International Research Journal on Advanced Engineering Hub (IRJAEH) 3, Nr. 02 (20.02.2025): 235–39. https://doi.org/10.47392/irjaeh.2025.0033.
Der volle Inhalt der QuelleDissertationen zum Thema "LSTM Temporel"
Gaddari, Abdelhamid. „Analysis and Prediction of Patient Pathways in the Context of Supplemental Health Insurance“. Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10299.
Der volle Inhalt der QuelleThis thesis work falls into the category of healthcare informatics research, specifically the analysis and prediction of patients’ care pathways, which are the sequences of medical services consumed by patients over time. Our aim is to propose an innovative approach for the exploitation of patient care trajectory data in order to achieve not only binary, but also multi-label classification. We also design a new sentence embedding framework exclusively for the french medical domain, which will harness another view of the patients’ care pathways in order to enhance the predictive performance of our proposed approach. Our research is part of the work of CEGEDIM ASSURANCES, a business unit of the CEGEDIM Group that provides software and services for the french supplementary healthcare insurance and risk management sectors. By analyzing the patient care pathway and leveraging our proposed approach, we can extract valuable insights and identify patterns within the patients’ medical journeys in order to predict potential medical events or upcoming medical consumption. This will allow insurers to forecast future healthcare claims and therefore negotiate better rates with healthcare providers, allowing for accurate financial planning, fair pricing models and cost reductions. Furthermore, it enables private healthcare insurers to design personalized health plans that meet the specific needs of the patients, ensuring they receive the right care at the right time to prevent disease progression. Ultimately, offering preventive care programs and customized health products and services enhances client relationship, improving their satisfaction and reducing churn. In this work, we aim to develop an approach to analyze patient care pathways and predict medical events or upcoming treatments, based on a large portfolio of reimbursed medical records. To achieve this goal, we first propose a new time-aware long-short term memory based framework that can achieve both binary and multi-label classification. The proposed framework is then extended with another aspect of the patient healthcare trajectories, namely additional information from a fuzzy clustering of the same portfolio. We show that our proposed approach outperforms traditional and deep learning methods in medical binary and multi-label prediction. Subsequently, we enhance the predictive performance of our proposed approach by exploiting a supplementary view of the patient care pathways that consists of a detailed textual description of the consumed medical treatments. This is achieved through the design of F-BERTMed, a new sentence embedding framework for the french medical domain that presents significant advantages over the natural language processing (NLP) state-of-the-art methods. F-BERTMed is based on FlauBERT, whose pre-training using MLM (Masked Language Modeling) was extended on french medical texts before being fine-tuned on NLI (Natural Language Inference) and STS (Semantic Textual Similarity) tasks. We finally show that using F-BERTMed to generate a new representation of the patient care pathways enhances the performance of our proposed medical predictive framework on both binary and multi-label classification tasks
Singh, Akash. „Anomaly Detection for Temporal Data using Long Short-Term Memory (LSTM)“. Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215723.
Der volle Inhalt der QuelleVi undersöker Long short-term memory (LSTM) för avvikelsedetektion i tidsseriedata. På grund av svårigheterna i att hitta data med etiketter så har ett oövervakat an-greppssätt använts. Vi tränar rekursiva neuronnät (RNN) med LSTM-noder för att lära modellen det normala tidsseriemönstret och prediktera framtida värden. Vi undersö-ker olika sätt av att behålla LSTM-tillståndet och effekter av att använda ett konstant antal tidssteg på LSTM-prediktionen och avvikelsedetektionsprestandan. LSTM är också jämförda med vanliga neuronnät med fasta tidsfönster över indata. Våra experiment med tre verkliga datasetvisar att även om LSTM RNN är tillämpbara för generell tidsseriemodellering och avvikelsedetektion så är det avgörande att behålla LSTM-tillståndet för att få de önskaderesultaten. Dessutom är det inte nödvändigt att använda LSTM för enkla tidsserier.
Holm, Noah, und Emil Plynning. „Spatio-temporal prediction of residential burglaries using convolutional LSTM neural networks“. Thesis, KTH, Geoinformatik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229952.
Der volle Inhalt der QuelleHudgins, Hayden. „Human Path Prediction using Auto Encoder LSTMs and Single Temporal Encoders“. DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2119.
Der volle Inhalt der QuelleLindström, Per. „Deep Imitation Learning on Spatio-Temporal Data with Multiple Adversarial Agents Applied on Soccer“. Thesis, Linköpings universitet, Databas och informationsteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-158076.
Der volle Inhalt der QuelleCissoko, Mamadou Ben Hamidou. „Adaptive time-aware LSTM for predicting and interpreting ICU patient trajectories from irregular data“. Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD012.
Der volle Inhalt der QuelleIn personalized predictive medicine, accurately modeling a patient's illness and care processes is crucial due to the inherent long-term temporal dependencies. However, Electronic Health Records (EHRs) often consist of episodic and irregularly timed data, stemming from sporadic hospital admissions, which create unique patterns for each hospital stay. Consequently, constructing a personalized predictive model necessitates careful consideration of these factors to accurately capture the patient's health journey and assist in clinical decision-making. LSTM networks are effective for handling sequential data like EHRs, but they face two significant limitations: the inability to interpret prediction results and to take into account irregular time intervals between consecutive events. To address limitations, we introduce novel deep dynamic memory neural networks called Multi-Way Adaptive and Adaptive Multi-Way Interpretable Time-Aware LSTM (MWTA-LSTM and AMITA) designed for irregularly collected sequential data. The primary objective of both models is to leverage medical records to memorize illness trajectories and care processes, estimate current illness states, and predict future risks, thereby providing a high level of precision and predictive power
Mukhedkar, Dhananjay. „Polyphonic Music Instrument Detection on Weakly Labelled Data using Sequence Learning Models“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279060.
Der volle Inhalt der QuellePolyfonisk eller multipel musikinstrumentdetektering är ett svårt problem jämfört med att detektera enstaka eller soloinstrument i en ljudinspelning. Eftersom musik är tidsseriedata kan den modelleras med hjälp av sekvensinlärningsmetoder inom djup inlärning. Nyligen har ’Temporal Convolutional Network’ (TCN) visat sig överträffa konventionella ’Recurrent Neural Network’ (RNN) på flertalet sekvensmodelleringsuppgifter. Även om det har skett betydande förbättringar i metoder för djup inlärning, blir dataknapphet ett problem vid utbildning av storskaliga modeller. Svagt märkta data är ett alternativ där ett klipp kommenteras för närvaro av frånvaro av instrument utan att ange de tidpunkter då ett instrument låter. Denna studie undersöker hur TCN-modellen jämförs med en ’Long Short-Term Memory’ (LSTM) -modell medan den tränas i svagt märkta datasätt. Resultaten visade framgångsrik utbildning av båda modellerna tillsammans med generalisering i en separat datasats. Jämförelsen visade att TCN presterade bättre än LSTM, men endast marginellt. Därför kan man från de genomförda experimenten inte uttryckligen dra slutsatsen om TCN övertygande är ett bättre val jämfört med LSTM i samband med instrumentdetektering, men definitivt ett starkt alternativ.
Jain, Monika. „Regularized ensemble correlation filter tracking“. Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/229266/1/Monika_Jain_Thesis.pdf.
Der volle Inhalt der QuelleRaminella, Marco. „Predizione real-time da dati di sensori impiantistici e ambientali“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18643/.
Der volle Inhalt der QuelleMax, Lindblad. „The impact of parsing methods on recurrent neural networks applied to event-based vehicular signal data“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-223966.
Der volle Inhalt der QuelleDenna avhandling jämför två olika tillvägagångssätt vad gäller parsningen av händelsebaserad signaldata från fordon för att producera indata till en förutsägelsemodell i form av ett neuronnät, nämligen händelseparsning, där datan förblir ojämnt fördelad över tidsdomänen, och skivparsning, där datan är omgjord till att istället vara jämnt fördelad över tidsdomänen. Det dataset som används för dessa experiment är ett antal signalloggar från fordon som kommer från Scania. Jämförelser mellan parsningsmetoderna gjordes genom att först träna ett lång korttidsminne (LSTM) återkommande neuronnät (RNN) på vardera av de skapade dataseten för att sedan mäta utmatningsfelet och resurskostnader för varje modell efter att de validerats på en delad uppsättning av valideringsdata. Resultaten från dessa tester visar tydligt på att skivparsning står sig väl mot händelseparsning.
Buchteile zum Thema "LSTM Temporel"
Zheng, Lin, Chaowei Qi und Shibo Zhao. „Multivariate Passenger Flow Forecast Based on ACLB Model“. In Proceeding of 2021 International Conference on Wireless Communications, Networking and Applications, 104–13. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2456-9_12.
Der volle Inhalt der QuelleBakalos, Nikolaos, Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, Kassiani Papasotiriou und Matthaios Bimpas. „Fusing RGB and Thermal Imagery with Channel State Information for Abnormal Activity Detection Using Multimodal Bidirectional LSTM“. In Cyber-Physical Security for Critical Infrastructures Protection, 77–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69781-5_6.
Der volle Inhalt der QuelleWang, Huimu, Zhen Liu, Zhiqiang Pu und Jianqiang Yi. „STGA-LSTM: A Spatial-Temporal Graph Attentional LSTM Scheme for Multi-agent Cooperation“. In Neural Information Processing, 663–75. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63833-7_56.
Der volle Inhalt der QuelleLi, Hongsheng, Guangming Zhu, Liang Zhang, Juan Song und Peiyi Shen. „Graph-Temporal LSTM Networks for Skeleton-Based Action Recognition“. In Pattern Recognition and Computer Vision, 480–91. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60639-8_40.
Der volle Inhalt der QuelleSingh, Vikram, und Sohan Kumar. „Temporal Intelligence: Recognizing User Activities with Stacked LSTM Networks“. In Smart Innovation, Systems and Technologies, 309–19. Singapore: Springer Nature Singapore, 2024. https://doi.org/10.1007/978-981-97-6222-4_25.
Der volle Inhalt der QuelleSilva, Rafael, Lourenço Abrunhosa Rodrigues, André Lourenço und Hugo Plácido da Silva. „Temporal Dynamics of Drowsiness Detection Using LSTM-Based Models“. In Advances in Computational Intelligence, 211–20. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-43085-5_17.
Der volle Inhalt der QuelleCissoko, Mamadou Ben Hamidou, Vincent Castelain und Nicolas Lachiche. „Modeling Temporal Dynamics in Irregular ICU Data Using MWTA-LSTM“. In Lecture Notes in Computer Science, 26–37. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-73500-4_3.
Der volle Inhalt der QuelleLiu, Jun, Amir Shahroudy, Dong Xu und Gang Wang. „Spatio-Temporal LSTM with Trust Gates for 3D Human Action Recognition“. In Computer Vision – ECCV 2016, 816–33. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46487-9_50.
Der volle Inhalt der QuelleYao, Li, und Ying Qian. „DT-3DResNet-LSTM: An Architecture for Temporal Activity Recognition in Videos“. In Advances in Multimedia Information Processing – PCM 2018, 622–32. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00776-8_57.
Der volle Inhalt der QuelleHuang, Rui, Wanyue Zhang, Abhijit Kundu, Caroline Pantofaru, David A. Ross, Thomas Funkhouser und Alireza Fathi. „An LSTM Approach to Temporal 3D Object Detection in LiDAR Point Clouds“. In Computer Vision – ECCV 2020, 266–82. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58523-5_16.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "LSTM Temporel"
Wang, Peicheng. „Multi-Feature Temporal Prediction Based on Hybrid LSTM Models“. In 2024 IEEE 7th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), 207–10. IEEE, 2024. https://doi.org/10.1109/auteee62881.2024.10869794.
Der volle Inhalt der QuelleLi, Ming, Furui Zhang, Yuqing Wang, Jing Ren und Qiang Zhou. „Multidimensional Temporal Photovoltaic Power Prediction Based on VMD-SSA-LSTM“. In 2024 6th International Conference on Energy Systems and Electrical Power (ICESEP), 192–97. IEEE, 2024. http://dx.doi.org/10.1109/icesep62218.2024.10651709.
Der volle Inhalt der QuelleMedeiros, Thiago, und Alfredo Weitzenfeld. „A Place Cell Model for Spatio-Temporal Navigation Learning with LSTM“. In 2024 International Joint Conference on Neural Networks (IJCNN), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10650241.
Der volle Inhalt der QuelleAlbino, Adrian Joseph, Julian Ernest Curativo und Christine F. Peña. „Spatio-Temporal Crime Prediction Using Dynamic Mode Decomposition and CNN-LSTM“. In 2024 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT), 384–90. IEEE, 2024. https://doi.org/10.1109/comnetsat63286.2024.10862638.
Der volle Inhalt der QuelleRoy, Pritha Singha, und Vinay Kukreja. „Temporal Evolution of Color Variations in Land Lotus Using CNN-LSTM Method“. In 2024 Global Conference on Communications and Information Technologies (GCCIT), 1–6. IEEE, 2024. https://doi.org/10.1109/gccit63234.2024.10862966.
Der volle Inhalt der QuelleAzizah, Nur, Eko Mulyanto Yuniarno und Mauridhi Hery Purnomo. „Lip Reading Using Spatio Temporal Convolutions (STCNN) And Long Short Term Memory (LSTM)“. In 2024 International Seminar on Intelligent Technology and Its Applications (ISITIA), 734–39. IEEE, 2024. http://dx.doi.org/10.1109/isitia63062.2024.10667885.
Der volle Inhalt der QuelleSong, Jingkuan, Lianli Gao, Zhao Guo, Wu Liu, Dongxiang Zhang und Heng Tao Shen. „Hierarchical LSTM with Adjusted Temporal Attention for Video Captioning“. In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/381.
Der volle Inhalt der QuelleAlmeida, Anderson, Marcos Amaris und Bruno Merlin. „Predição temporal e espaço-temporal dos parâmetros da qualidade da água“. In Escola Regional de Alto Desempenho Norte 2. Sociedade Brasileira de Computação, 2021. http://dx.doi.org/10.5753/erad-no2.2021.18676.
Der volle Inhalt der QuelleKong, Dejiang, und Fei Wu. „HST-LSTM: A Hierarchical Spatial-Temporal Long-Short Term Memory Network for Location Prediction“. In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/324.
Der volle Inhalt der QuelleJiang, P., I. Bychkov, J. Liu und A. Hmelnov. „Predicting of air pollutant concentrations based on spatio-temporal attention convolutional LSTM networks“. In 1st International Workshop on Advanced Information and Computation Technologies and Systems 2020. Crossref, 2021. http://dx.doi.org/10.47350/aicts.2020.09.
Der volle Inhalt der Quelle