Auswahl der wissenschaftlichen Literatur zum Thema „Machine Learning in Telecommunications“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Machine Learning in Telecommunications" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Machine Learning in Telecommunications"

1

Krishnan R, CV Krishnaveni, and AV Krishna Prasad. "Telecom Churn Prediction using Machine Learning." World Journal of Advanced Engineering Technology and Sciences 7, no. 2 (2022): 087–96. http://dx.doi.org/10.30574/wjaets.2022.7.2.0130.

Der volle Inhalt der Quelle
Annotation:
In every industry, customers are crucial. Customer churn can have a variety of effects and have a negative influence on sales. Analysis and forecasting of customer turnover must be a key component of any business. We will analyze and forecast customer turnover in the telecom industry in our study. The study of consumer behavior is crucial for the telecommunications sector in order to identify those customers who are most likely to cancel their subscriptions. Because there is so much data available and the market is becoming more competitive, businesses are spending more time trying to keep the
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Shaikh Shabbir, Mohammed Juned, Pradip Sitaram Ingle, Sagar Shrikrishna Dharamkar, and Ravindra Bhika Phase. "Online Fraud Call Detection: A Machine Learning Approach for Real-Time Identification and Prevention." International Scientific Journal of Engineering and Management 04, no. 07 (2025): 1–9. https://doi.org/10.55041/isjem04773.

Der volle Inhalt der Quelle
Annotation:
Detection of Online Fraud Calls, A Machine Learning Method for Real-Time Identification and Prevention The rise of telecommunication fraud has become a major issue in the digital era, resulting in annual losses up to billions of dollars due to false calls. This research introduces a robust machine learning system for the real-time detection of online fraudulent calls. Our suggested system amalgamates various detection methodologies, including voice pattern analysis, behavioral profiling, and network traffic surveillance, to discern anomalous calling patterns. The system utilizes a hybrid metho
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Bagam, Naveen, Sai Krishna Shiramshetty, Mouna Mothey, Sri Nikhil Annam, and Santhosh Bussa. "Machine Learning Applications in Telecom and Banking." Integrated Journal for Research in Arts and Humanities 4, no. 6 (2024): 57–69. http://dx.doi.org/10.55544/ijrah.4.6.8.

Der volle Inhalt der Quelle
Annotation:
The uses of machine learning (ML) in the banking and telecommunication sectors are investigated over the course of this research paper. The results of the article indicate that by means of enhanced customer experience, identification of fraudulent behaviour, risk management, and operational efficiency, machine learning algorithms are changing these sectors. This article covers several machine learning methods including supervised and unsupervised learning, deep learning, reinforcement learning, and others together with their particular uses in the banking and telecommunications sectors especia
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Praveen, Halingali, Kumar Santosh, Desai Sanket, and S. Alagoudar Punith. "Survey on Applications of Machine Learning." Journal of Research and Review: Machine Learning 1, no. 2 (2025): 29–35. https://doi.org/10.5281/zenodo.14922864.

Der volle Inhalt der Quelle
Annotation:
<em>Machine learning (ML) has transformed research methodologies across technical disciplines by enabling data-driven decision-making and predictive analytics. This paper explores ML&rsquo;s core principles, issues and future developments, emphasizing its impact on optimizing research processes in fields such as engineering, materials science, and telecommunications. Key ML paradigms, including supervised, unsupervised, and reinforcement learning, are analyzed in the context of technical applications. Additionally, this study addresses challenges such as data quality and model interpretability
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ibrahim Adedeji Adeniran, Christianah Pelumi Efunniyi, Olajide Soji Osundare, and Angela Omozele Abhulimen. "Implementing machine learning techniques for customer retention and churn prediction in telecommunications." Computer Science & IT Research Journal 5, no. 8 (2024): 2011–25. http://dx.doi.org/10.51594/csitrj.v5i8.1489.

Der volle Inhalt der Quelle
Annotation:
This review paper explores the application of machine learning techniques in predicting customer churn and enhancing customer retention within the telecommunications industry. The paper begins by discussing the significance of customer churn, its causes, and the limitations of traditional churn prediction methods. It then delves into machine learning algorithms, including decision trees, support vector machines, and ensemble methods. It highlights their effectiveness in handling large and complex datasets typical of the telecom sector. The discussion extends to the challenges faced in data qua
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Maddipudi, Sreenu. "The Role of Artificial Intelligence in Data Migration for Telecommunications." International Scientific Journal of Engineering and Management 04, no. 02 (2025): 1–7. https://doi.org/10.55041/isjem02254.

Der volle Inhalt der Quelle
Annotation:
The telecommunications industry has witnessed rapid digital transformation in recent years, with data migration playing a critical role in adapting to new technologies and improving service delivery. As organizations move from legacy systems to modern cloud-based architectures, the complexity and scale of data migration processes increase. Traditional migration methods often face challenges such as downtime, data integrity issues, and the need for manual intervention. Artificial Intelligence (AI) has emerged as a transformative solution, offering automated, intelligent, and scalable approaches
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Huh, Jae-Hyuk, and Woongsup Lee. "Machine Learning based Churn Prediction in Telecommunications." Journal of the Korea Institute of Information and Communication Engineering 27, no. 8 (2023): 1016–19. http://dx.doi.org/10.6109/jkiice.2023.27.8.1016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

KOKO, Joe BALANGA, Guylit KIALA LUTUMBA, Francis KANGA SALU, et al. "Machine Learning-based Customer Churn Analysis in Telecommunications Using Support Vector Machines." Asian Journal of Research in Computer Science 18, no. 5 (2025): 187–203. https://doi.org/10.9734/ajrcos/2025/v18i5648.

Der volle Inhalt der Quelle
Annotation:
Faced with globalization and increasing competition, the information available via the Internet and the many connected objects continues to increase. This explosion of data, often heterogeneous and from diverse sources, poses major challenges in terms of storage, analysis and exploitation. This paper is the result of the present research on the analysis and classification of churning customers in a telecommunications company. These data, often heterogeneous and coming from various sources, require in-depth analysis as well as new storage and exploration paradigms to extract value from them. Th
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Nagappan Nagappan Palaniappan. "Intelligent Network Management: Integration of AI/ML Technologies in Modern Telecommunications Infrastructure." International Journal of Scientific Research in Computer Science, Engineering and Information Technology 11, no. 1 (2025): 2938–46. https://doi.org/10.32628/cseit251112310.

Der volle Inhalt der Quelle
Annotation:
This article examines the transformative impact of artificial intelligence and machine learning technologies on modern telecommunications infrastructure, with a particular focus on network traffic optimization. It presents a comprehensive analysis of how AI-driven solutions are revolutionizing predictive maintenance protocols, real-time traffic management, and anomaly detection in telecommunication networks. Through an exploration of reinforcement learning applications in dynamic routing and quality of service optimization, this article demonstrates significant improvements in network reliabil
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Samuel Olaoluwa Folorunsho, Olubunmi Adeolu Adenekan, Chinedu Ezeigweneme, Ike Chidiebere Somadina, and Patrick Azuka Okeleke. "Developing smart cities with telecommunications: Building connected and sustainable urban environments." Engineering Science & Technology Journal 5, no. 8 (2024): 2492–519. http://dx.doi.org/10.51594/estj.v5i8.1441.

Der volle Inhalt der Quelle
Annotation:
The rapid urbanization experienced globally has necessitated the development of smart cities, integrating advanced telecommunications to create connected and sustainable urban environments. This review paper explores the pivotal role of telecommunications in the evolution of smart cities, highlighting its impact on enhancing connectivity, improving public services, and fostering sustainable development. By leveraging Internet of Things (IoT) technologies, telecommunications infrastructure facilitates real-time data exchange and efficient resource management, essential for smart city operations
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Dissertationen zum Thema "Machine Learning in Telecommunications"

1

Janagam, Anirudh, and Saddam Hossen. "Analysis of Network Intrusion Detection System with Machine Learning Algorithms (Deep Reinforcement Learning Algorithm)." Thesis, Blekinge Tekniska Högskola, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-17126.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Larsson, Fredrik, and Albert Karlsson. "Evaluation of Machine Learning Algorithms to Reduce Paging Signalling in a Telecom Network." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-143714.

Der volle Inhalt der Quelle
Annotation:
In a telecommunications network locating user equipment (paging) is a common procedure. Proposed functionality for 4G and 5G allows for eNB initiated paging via X2 interfaces. In this thesis machine learning algorithms were evaluated in order to reduce page signalling. Additionally, two paging schemes based on machine learning were proposed and compared to a common method of paging through cost models. The results show that signalling cost can be reduced by up to 80%.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

CAZZATO, STEFANIA. "Machine Learning Techniques Applied to Telecommunication Data." Doctoral thesis, Università degli studi di Genova, 2019. http://hdl.handle.net/11567/942536.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chapala, Usha Kiran, and Sridhar Peteti. "Continuous Video Quality of Experience Modelling using Machine Learning Model Trees." Thesis, Blekinge Tekniska Högskola, Institutionen för datavetenskap, 1996. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-17814.

Der volle Inhalt der Quelle
Annotation:
Adaptive video streaming is perpetually influenced by unpredictable network conditions, whichcauses playback interruptions like stalling, rebuffering and video bit rate fluctuations. Thisleads to potential degradation of end-user Quality of Experience (QoE) and may make userchurn from the service. Video QoE modelling that precisely predicts the end users QoE underthese unstable conditions is taken into consideration quickly. The root cause analysis for thesedegradations is required for the service provider. These sudden changes in trend are not visiblefrom monitoring the data from the underlyi
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Bernabè, Matteo. "Machine learning based traffic analysis and forecast for 5G Systems." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.

Den vollen Inhalt der Quelle finden
Annotation:
Mobile traffic forecasting is a relatively new research area, which is becoming of fundamental importance for next-generation networks. Proactively knowing the user demand allows the system to allocate resources and apply energy-saving decisions properly. Classical models are limited by the stationary assumption of time sequences and fail to take correlations into account. This work presents results on cellular network traffic analysis and prediction, providing a novel, robust, and precise machine learning model to efficiently and dynamically manage network resources in 5G systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Palapelas, Kantola Philip. "Extreme Quantile Estimation of Downlink Radio Channel Quality." Thesis, Linköpings universitet, Artificiell intelligens och integrerade datorsystem, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177657.

Der volle Inhalt der Quelle
Annotation:
The application area of Fifth Generation New Radio (5G-NR) called Ultra-Reliable and Low-Latency Communication (URLLC) requires a reliability, the probability of receiving and decoding a data packet correctly, of 1 - 10^5. For this requirement to be fulfilled in a resource-efficient manner, it is necessary to have a good estimation of extremely low quan- tiles of the channel quality distribution, so that appropriate resources can be distributed to users of the network system.  This study proposes and evaluates two methods for estimating extreme quantiles of the downlink channel quality distrib
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Landecker, Will. "Interpretable Machine Learning and Sparse Coding for Computer Vision." PDXScholar, 2014. https://pdxscholar.library.pdx.edu/open_access_etds/1937.

Der volle Inhalt der Quelle
Annotation:
Machine learning offers many powerful tools for prediction. One of these tools, the binary classifier, is often considered a black box. Although its predictions may be accurate, we might never know why the classifier made a particular prediction. In the first half of this dissertation, I review the state of the art of interpretable methods (methods for explaining why); after noting where the existing methods fall short, I propose a new method for a particular type of black box called additive networks. I offer a proof of trustworthiness for this new method (meaning a proof that my method does
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Nguyen, Thi Thu Thuy. "A novel approach for practical real-time, machine learning based ip traffic classification." Swinburne Research Bank, 2009. http://hdl.handle.net/1959.3/61268.

Der volle Inhalt der Quelle
Annotation:
Thesis (PhD) - Swinburne University of Technology, Faculty of Engineering and Industrial Sciences, Centre for Advanced Internet Architectures, 2009.<br>A thesis submitted for the degree of Doctor of Philosophy, Centre for Advanced Internet Architectures, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, 2009. Typescript. Bibliography: p. 218-240.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Adapa, Supriya. "TensorFlow Federated Learning: Application to Decentralized Data." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.

Den vollen Inhalt der Quelle finden
Annotation:
Machine learning is a complex discipline. But implementing machine learning models is far less daunting and difficult than it used to be, thanks to machine learning frameworks such as Google’s TensorFlow Federated that ease the process of acquiring data, training models, serving predictions, and refining future results. There are an estimated 3 billion smartphones in the world and 7 billion connected devices. These phones and devices are constantly generating new data. Traditional analytics and machine learning need that data to be centrally collected before it is processed to yield insights,
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Jeon, Sung-eok. "Near-Optimality of Distributed Network Management with a Machine Learning Approach." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16136.

Der volle Inhalt der Quelle
Annotation:
An analytical framework is developed for distributed management of large networks where each node makes locally its decisions. Two issues remain open. One is whether a distributed algorithm would result in a near-optimal management. The other is the complexity, i.e., whether a distributed algorithm would scale gracefully with a network size. We study these issues through modeling, approximation, and randomized distributed algorithms. For near-optimality issue, we first derive a global probabilistic model of network management variables which characterizes the complex spatial dependence of the
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Bücher zum Thema "Machine Learning in Telecommunications"

1

Vishnevskiy, V. M., and D. V. Efrosinin. Queue theory and machine learning. INFRA-M Academic Publishing LLC., 2025. https://doi.org/10.12737/2184048.

Der volle Inhalt der Quelle
Annotation:
The monograph is devoted to a systematic presentation of a new approach to the study of complex problems of queue theory using machine learning methods and its application in the design of telecommunication networks of a new generation. It is based on the authors' original results published in leading Russian journals and in highly rated foreign publications, as well as lectures delivered at the Moscow Institute of Physics and Technology and the Johannes Kepler University of Linz (Austria). It is intended for a wide range of specialists in the field of stochastic systems and the design of comp
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Pathak, Manas A. Privacy-Preserving Machine Learning for Speech Processing. Springer New York, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

K, Suykens Johan A., Signoretto Marco, and Argyriou Andreas, eds. Regularization, optimization, kernels, and support vector machines. Taylor & Francis, 2014.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Mars, P. Learning algorithms: Theory and applications in signal processing, control, and communications. CRC Press, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhou, Zhi-Hua. Machine Learning. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-1967-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Jung, Alexander. Machine Learning. Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8193-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Mitchell, Tom M., Jaime G. Carbonell, and Ryszard S. Michalski. Machine Learning. Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2279-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Fernandes de Mello, Rodrigo, and Moacir Antonelli Ponti. Machine Learning. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94989-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Bell, Jason. Machine Learning. John Wiley & Sons, Inc, 2014. http://dx.doi.org/10.1002/9781119183464.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Huang, Kaizhu, Haiqin Yang, Irwin King, and Michael Lyu. Machine Learning. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-79452-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Buchteile zum Thema "Machine Learning in Telecommunications"

1

Ng, Soon Xin. "Cooperative Communications, Distributed Coding and Machine Learning." In E-Business and Telecommunications. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52686-3_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gomez, Laurent, Alberto Ibarrondo, Marcus Wilhelm, José Márquez, and Patrick Duverger. "Security for Distributed Machine Learning Based Software." In E-Business and Telecommunications. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34866-3_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Grethler, Michael, Marin B. Marinov, and Vesa Klumpp. "Embedded Machine Learning for Machine Condition Monitoring." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78459-1_16.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chai, Mengqiu, Yun Lin, and Ying Li. "Machine Learning and Modern Education." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93719-9_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

de Andrés, Moisés Loma-Osorio, Aneta Poniszewska-Marańda, and Luis Alfonso Hernández Gómez. "Towards the Machine Learning Algorithms in Telecommunications Business Environment." In Information Systems. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63396-7_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wang, Shaoqian, Bo Li, Mao Yang, and Zhongjiang Yan. "Missing Data Imputation for Machine Learning." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14657-3_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Dharmarajula, Ajay, Challa Sahithi, and G. S. Prasada Reddy. "Competitive Programming Vestige Using Machine Learning." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-35081-8_22.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Tiaiba, Hafida, Lyazid Sabri, Abdelghani Chibani, and Okba Kazar. "Machine Learning for Drug Efficiency Prediction." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-32029-3_27.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Santos, Maria Chousa, Teresa Pereira, Isabel Mendes, and António Amaral. "Machine Learning for Insurance Fraud Detection." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-51572-9_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wang, Zixin, Bing Mi, and Kongyang Chen. "EncoderMU: Machine Unlearning in Contrastive Learning." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-73699-5_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Machine Learning in Telecommunications"

1

Yehya, Batoul Abo, and Nazih Salhab. "Telecommunications Fraud Machine Learning-based Detection." In 2023 4th International Conference on Data Analytics for Business and Industry (ICDABI). IEEE, 2023. http://dx.doi.org/10.1109/icdabi60145.2023.10629612.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Saleh, Ahmed, Asmaa Hussein, Abdelrahman Emad, et al. "Machine Learning-based classification of cotton diseases using mobilenet and Support Vector Machine." In 2024 International Telecommunications Conference (ITC-Egypt). IEEE, 2024. http://dx.doi.org/10.1109/itc-egypt61547.2024.10620532.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Majid, M. A. "Engineering Quantum Dots: Overcoming Challenges in Telecommunications and Human-Machine Interaction." In 2025 22nd International Learning and Technology Conference (L&T). IEEE, 2025. https://doi.org/10.1109/lt64002.2025.10940129.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Nimara, Doumitrou Daniil, Fitsum Gaim Gebre, and Vincent Huang. "Entity Recognition in Telecommunications using Domain-adapted Language Models." In 2024 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN). IEEE, 2024. http://dx.doi.org/10.1109/icmlcn59089.2024.10624809.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Elshweikh, Ahmed A., Ahmed M. Maher, Mohamed Hussein, and Ashraf D. Elbayoumy. "Intrusion Detection System for IoT Using Machine Learning." In 2024 International Telecommunications Conference (ITC-Egypt). IEEE, 2024. http://dx.doi.org/10.1109/itc-egypt61547.2024.10620546.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Litovkin, Segey, Pavel Laptev, and Evgeny Kostyuchenko. "Application of Machine Learning Techniques for Generated Speech Detection." In 2024 32nd Telecommunications Forum (TELFOR). IEEE, 2024. https://doi.org/10.1109/telfor63250.2024.10819160.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Tejada-Vicente, Luis, Dana Rosado-Oliden, and David Mauricio-Santos. "Prediction of Telecommunications Customer Churn Based on Hybrid Machine Learning and Deep Learning Algorithms." In 2024 IEEE XXXI International Conference on Electronics, Electrical Engineering and Computing (INTERCON). IEEE, 2024. https://doi.org/10.1109/intercon63140.2024.10833498.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Saeidifar, Arshia, Khashayar Saremi, and Bahareh Akhbari. "NOMA-SWIPT optimization with PSO and machine learning algorithm." In 2024 11th International Symposium on Telecommunications (IST). IEEE, 2024. https://doi.org/10.1109/ist64061.2024.10843637.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

El-Metwaly, Aya El-Sayed, Mohamed Reda Bedair, Saleh Tamer Abdallah, et al. "Detection of Phishing URLs Based on Machine Learning and Cybersecurity." In 2024 International Telecommunications Conference (ITC-Egypt). IEEE, 2024. http://dx.doi.org/10.1109/itc-egypt61547.2024.10620574.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Rizk, Faris H., Mahmoud Elshabrawy Mohamed, Basant Sameh, Ahmed Mohamed Zaki, Marwa M. Eid, and El-Sayed M. El-kenawy. "Predictive Modeling of Portuguese Student Performance: Comparative Machine Learning Analysis." In 2024 International Telecommunications Conference (ITC-Egypt). IEEE, 2024. http://dx.doi.org/10.1109/itc-egypt61547.2024.10620557.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Machine Learning in Telecommunications"

1

Vesselinov, Velimir Valentinov. Machine Learning. Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1492563.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Valiant, L. G. Machine Learning. Defense Technical Information Center, 1993. http://dx.doi.org/10.21236/ada283386.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Chase, Melissa P. Machine Learning. Defense Technical Information Center, 1990. http://dx.doi.org/10.21236/ada223732.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kagie, Matthew J., and Park Hays. FORTE Machine Learning. Office of Scientific and Technical Information (OSTI), 2016. http://dx.doi.org/10.2172/1561828.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Lin, Youzuo, Shihang Feng, and Esteban Rougier. Machine Learning Tutorial. Office of Scientific and Technical Information (OSTI), 2022. http://dx.doi.org/10.2172/1876777.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Vassilev, Apostol. Adversarial Machine Learning:. National Institute of Standards and Technology, 2024. http://dx.doi.org/10.6028/nist.ai.100-2e2023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kelly, Bryan, and Dacheng Xiu. Financial Machine Learning. National Bureau of Economic Research, 2023. http://dx.doi.org/10.3386/w31502.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Caplin, Andrew, Daniel Martin, and Philip Marx. Modeling Machine Learning. National Bureau of Economic Research, 2022. http://dx.doi.org/10.3386/w30600.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Christie, Lorna. Interpretable machine learning. Parliamentary Office of Science and Technology, 2020. http://dx.doi.org/10.58248/pn633.

Der volle Inhalt der Quelle
Annotation:
Machine learning (ML, a type of artificial intelligence) is increasingly being used to support decision making in a variety of applications including recruitment and clinical diagnoses. While ML has many advantages, there are concerns that in some cases it may not be possible to explain completely how its outputs have been produced. This POSTnote gives an overview of ML and its role in decision-making. It examines the challenges of understanding how a complex ML system has reached its output, and some of the technical approaches to making ML easier to interpret. It also gives a brief overview
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Vassilev, Apostol. Adversarial Machine Learning:. National Institute of Standards and Technology, 2025. https://doi.org/10.6028/nist.ai.100-2e2025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!