Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „MAINTENANCE PREDICTION“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "MAINTENANCE PREDICTION" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "MAINTENANCE PREDICTION"
Marshall, David F. „Language Maintenance and Revival“. Annual Review of Applied Linguistics 14 (März 1994): 20–33. http://dx.doi.org/10.1017/s0267190500002798.
Der volle Inhalt der QuelleXu, Peng, Rengkui Liu, Quanxin Sun und Futian Wang. „A Novel Short-Range Prediction Model for Railway Track Irregularity“. Discrete Dynamics in Nature and Society 2012 (2012): 1–12. http://dx.doi.org/10.1155/2012/591490.
Der volle Inhalt der QuelleNansamba, Salmah, und Hadi Harb. „Developing a Neural Network Based Fault Prediction Tool for a Solar Power Plant in Uganda“. Transactions on Machine Learning and Artificial Intelligence 10, Nr. 6 (28.12.2022): 52–70. http://dx.doi.org/10.14738/tmlai.106.13645.
Der volle Inhalt der QuelleKang, Ziqiu, Cagatay Catal und Bedir Tekinerdogan. „Remaining Useful Life (RUL) Prediction of Equipment in Production Lines Using Artificial Neural Networks“. Sensors 21, Nr. 3 (30.01.2021): 932. http://dx.doi.org/10.3390/s21030932.
Der volle Inhalt der QuelleFitra Azyus, Adryan, Sastra Kusuma Wijaya und Mohd Naved. „Determining RUL Predictive Maintenance on Aircraft Engines Using GRU“. Journal of Mechanical, Civil and Industrial Engineering 3, Nr. 3 (11.12.2022): 79–84. http://dx.doi.org/10.32996/jmcie.2022.3.3.10.
Der volle Inhalt der QuelleD., Ganga, und Ramachandran V. „Adaptive prediction model for effective electrical machine maintenance“. Journal of Quality in Maintenance Engineering 26, Nr. 1 (18.04.2019): 166–80. http://dx.doi.org/10.1108/jqme-12-2017-0087.
Der volle Inhalt der QuelleTong, Guoqiang, Xinbo Qian und Yilai Liu. „Prognostics and Predictive Maintenance Optimization Based on Combination BP-RBF-GRNN Neural Network Model and Proportional Hazard Model“. Journal of Sensors 2022 (29.04.2022): 1–17. http://dx.doi.org/10.1155/2022/8655669.
Der volle Inhalt der QuelleRodrigues, Joao, Jose Torres Farinha und Antonio Marques Cardoso. „Predictive Maintenance Tools – A Global Survey“. WSEAS TRANSACTIONS ON SYSTEMS AND CONTROL 16 (22.01.2021): 96–109. http://dx.doi.org/10.37394/23203.2021.16.7.
Der volle Inhalt der QuelleGibiec, Mariusz. „Prediction of Machines Health with Application of an Intelligent Approach – a Mining Machinery Case Study“. Key Engineering Materials 293-294 (September 2005): 661–68. http://dx.doi.org/10.4028/www.scientific.net/kem.293-294.661.
Der volle Inhalt der QuelleZhu, Ya Hong, Ji Ping Cao, Wen Xia Sun, Yang Tao Fan und Zhi Hui Zhao. „Demand Forecasting Model Based on Equipment Maintenance Resources in Virtual Warehousing“. Applied Mechanics and Materials 556-562 (Mai 2014): 5442–49. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.5442.
Der volle Inhalt der QuelleDissertationen zum Thema "MAINTENANCE PREDICTION"
Morrison, David J. „Prediction of software maintenance costs“. Thesis, Edinburgh Napier University, 2001. http://researchrepository.napier.ac.uk/Output/3601.
Der volle Inhalt der QuelleIshihara, Yasuo. „Prediction of human error in rail car maintenance“. Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/10629.
Der volle Inhalt der QuelleHartmann, Jens. „Analysis of maintenance records to support prediction of maintenance requirements in the German Army“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2001. http://handle.dtic.mil/100.2/ADA392054.
Der volle Inhalt der QuelleKumbala, Bharadwaj Reddy. „Predictive Maintenance of NOx Sensor using Deep Learning : Time series prediction with encoder-decoder LSTM“. Thesis, Blekinge Tekniska Högskola, Institutionen för tillämpad signalbehandling, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-18668.
Der volle Inhalt der QuellePodda, G. „PREDICTION OF OPTIMAL WARFARIN MAINTENANCE DOSE USING ADVANCED ARTIFICIAL NEURAL NETWORKS“. Doctoral thesis, Università degli Studi di Milano, 2013. http://hdl.handle.net/2434/219087.
Der volle Inhalt der QuelleTse, Peter W. „Neural networks for machine fault diagnosis and life span prediction“. Thesis, University of Sussex, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390518.
Der volle Inhalt der QuelleWan, Husain Wan Mohd Sufian Bin. „Maintainability prediction for aircraft mechanical components utilising aircraft feedback information“. Thesis, Cranfield University, 2011. http://dspace.lib.cranfield.ac.uk/handle/1826/7272.
Der volle Inhalt der QuelleKaidis, Christos. „Wind Turbine Reliability Prediction : A Scada Data Processing & Reliability Estimation Tool“. Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-221135.
Der volle Inhalt der QuelleSammouri, Wissam. „Data mining of temporal sequences for the prediction of infrequent failure events : application on floating train data for predictive maintenance“. Thesis, Paris Est, 2014. http://www.theses.fr/2014PEST1041/document.
Der volle Inhalt der QuelleIn order to meet the mounting social and economic demands, railway operators and manufacturers are striving for a longer availability and a better reliability of railway transportation systems. Commercial trains are being equipped with state-of-the-art onboard intelligent sensors monitoring various subsystems all over the train. These sensors provide real-time flow of data, called floating train data, consisting of georeferenced events, along with their spatial and temporal coordinates. Once ordered with respect to time, these events can be considered as long temporal sequences which can be mined for possible relationships. This has created a neccessity for sequential data mining techniques in order to derive meaningful associations rules or classification models from these data. Once discovered, these rules and models can then be used to perform an on-line analysis of the incoming event stream in order to predict the occurrence of target events, i.e, severe failures that require immediate corrective maintenance actions. The work in this thesis tackles the above mentioned data mining task. We aim to investigate and develop various methodologies to discover association rules and classification models which can help predict rare tilt and traction failures in sequences using past events that are less critical. The investigated techniques constitute two major axes: Association analysis, which is temporal and Classification techniques, which is not temporal. The main challenges confronting the data mining task and increasing its complexity are mainly the rarity of the target events to be predicted in addition to the heavy redundancy of some events and the frequent occurrence of data bursts. The results obtained on real datasets collected from a fleet of trains allows to highlight the effectiveness of the approaches and methodologies used
Hussin, Burairah. „Development of a state prediction model to aid decision making in condition based maintenance“. Thesis, University of Salford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.490430.
Der volle Inhalt der QuelleBücher zum Thema "MAINTENANCE PREDICTION"
Foundation, AWWA Research, und American Water Works Association, Hrsg. Main break prediction, prevention, and control. Denver, Colo: Awwa Research Foundation, 2007.
Den vollen Inhalt der Quelle findenTaynor, Janet. Prediction model for estimating performance impacts of maintenance stress. Brooks Air Force Base, Tex: Air Force Systems Command, Air Force Human Resources Laboratory, 1988.
Den vollen Inhalt der Quelle findenHu, Changhua, Hongdong Fan und Zhaoqiang Wang. Residual Life Prediction and Optimal Maintenance Decision for a Piece of Equipment. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-2267-0.
Der volle Inhalt der QuelleLiebermann, R. C. Stony Brook seismic network on Long Island, New York: Operation and maintenance, final report September 1979 - March 1985. Washington, D.C: Division of Radiation Programs and Earth Sciences, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1986.
Den vollen Inhalt der Quelle findenGregory, Williamson, Weyers Richard E, Brown Michael Carey 1969-, Sprinkel Michael M, Virginia Transportation Research Council und Virginia. Dept. of Transportation., Hrsg. Bridge deck service life prediction and costs. Charlottesville, Va: Virginia Transportation Research Council, 2007.
Den vollen Inhalt der Quelle findenInternational RILEM Workshop on Life Prediction and Aging Management of Concrete Structures (2003 Paris, France). 2nd International RILEM Workshop on Life Prediction and Aging Management of Concrete Structures : Paris, France, 5-6 May 2003. Bagneux: RILEM Publications, 2003.
Den vollen Inhalt der Quelle findenBartels, Bjoern. Strategies to the prediction, mitigation and management of product obsolescence. Hoboken, NJ: Wiley, 2012.
Den vollen Inhalt der Quelle findenYouakim, Samer Amir. A simplified method for prediction of long-term prestress loss in post-tensioned concrete bridges. La Jolla, Calif: Dept. of Structural Engineering, University of California, San Diego, 2006.
Den vollen Inhalt der Quelle findenPecht, Michael. Life-cycle forecasting, mitigation assessment, and obsolescence strategies: A guide to the prediction and management of electronic parts obsolescence. College Park, Md: CALCE EPSC Press, 2002.
Den vollen Inhalt der Quelle findenAn introduction to predictive maintenance. New York, NY: Van Nostrand Reinhold, 1990.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "MAINTENANCE PREDICTION"
Torim, Ants, Innar Liiv, Chahinez Ounoughi und Sadok Ben Yahia. „Pattern Based Software Architecture for Predictive Maintenance“. In Communications in Computer and Information Science, 26–38. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17030-0_3.
Der volle Inhalt der QuellePohlkötter, Fabian J., Dominik Straubinger, Alexander M. Kuhn, Christian Imgrund und William Tekouo. „Unlocking the Potential of Digital Twins“. In Advances in Automotive Production Technology – Towards Software-Defined Manufacturing and Resilient Supply Chains, 190–99. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-27933-1_18.
Der volle Inhalt der QuelleOrchard, Marcos E., und David E. Acuña. „On Prognostic Algorithm Design and Fundamental Precision Limits in Long-Term Prediction“. In Predictive Maintenance in Dynamic Systems, 355–79. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05645-2_12.
Der volle Inhalt der QuelleGómez Fernández, Juan Francisco, Jesús Ferrero Bermejo, Fernando Agustín Olivencia Polo, Adolfo Crespo Márquez und Gonzalo Cerruela García. „Dynamic Reliability Prediction of Asset Failure Modes“. In Advanced Maintenance Modelling for Asset Management, 291–309. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58045-6_12.
Der volle Inhalt der QuelleLughofer, Edwin, Alexandru-Ciprian Zavoianu, Mahardhika Pratama und Thomas Radauer. „Automated Process Optimization in Manufacturing Systems Based on Static and Dynamic Prediction Models“. In Predictive Maintenance in Dynamic Systems, 485–531. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05645-2_17.
Der volle Inhalt der QuelleWu, Peggy, Jacquelyn Morie, J. Benton, Kip Haynes, Eric Chance, Tammy Ott und Sonja Schmer-Galunder. „Social Maintenance and Psychological Support Using Virtual Worlds“. In Social Computing, Behavioral-Cultural Modeling and Prediction, 393–402. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05579-4_48.
Der volle Inhalt der QuelleAnderson, Ronald T., und Lewis Neri. „The Army Aircraft Flight Safety Prediction Model“. In Reliability-Centered Maintenance: Management and Engineering Methods, 275–311. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0757-7_6.
Der volle Inhalt der QuelleDe Lucia, Andrea, Eugenio Pompella und Silvio Stefanucci. „Assessing Effort Prediction Models for Corrective Software Maintenance“. In Enterprise Information Systems VI, 55–62. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-3675-2_7.
Der volle Inhalt der QuelleBharathi, V., und Udaya Shastry. „Neural Network Based Effort Prediction Model for Maintenance Projects“. In Communications in Computer and Information Science, 236–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21233-8_29.
Der volle Inhalt der QuelleZeng, Yi, Wei Jiang, Changan Zhu, Jianfeng Liu, Weibing Teng und Yidong Zhang. „Prediction of Equipment Maintenance Using Optimized Support Vector Machine“. In Lecture Notes in Computer Science, 570–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-37275-2_69.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "MAINTENANCE PREDICTION"
Mishra, KamalaKanta, und Sachin Kumar Manjhi. „Failure Prediction Model for Predictive Maintenance“. In 2018 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM). IEEE, 2018. http://dx.doi.org/10.1109/ccem.2018.00019.
Der volle Inhalt der QuelleZhou, J., X. Li, A. J. R. Andernroomer, H. Zeng, K. M. Goh, Y. S. Wong und G. S. Hong. „Intelligent prediction monitoring system for predictive maintenance in manufacturing“. In 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005. IEEE, 2005. http://dx.doi.org/10.1109/iecon.2005.1569264.
Der volle Inhalt der QuelleHafeez, Abdul Basit, Eduardo Alonso und Aram Ter-Sarkisov. „Towards Sequential Multivariate Fault Prediction for Vehicular Predictive Maintenance“. In 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2021. http://dx.doi.org/10.1109/icmla52953.2021.00167.
Der volle Inhalt der QuelleBundasak, Supaporn, und Pawin Wittayasirikul. „Predictive maintenance using AI for Motor health prediction system“. In 2022 International Electrical Engineering Congress (iEECON). IEEE, 2022. http://dx.doi.org/10.1109/ieecon53204.2022.9741620.
Der volle Inhalt der QuelleSu, Xiaobo, Qi Gao, Qingchun Wu und Jingxiong Gao. „Preventive Maintenance Task Prediction Based on Hierarchical Maintenance Conversion Law“. In 2020 Prognostics and Health Management Conference (PHM-Besançon). IEEE, 2020. http://dx.doi.org/10.1109/phm-besancon49106.2020.00054.
Der volle Inhalt der QuelleMosallam, Ahmed, Stefan Byttner, Magnus Svensson und Thorsteinn Rognvaldsson. „Nonlinear Relation Mining for Maintenance Prediction“. In 2011 IEEE Aerospace Conference. IEEE, 2011. http://dx.doi.org/10.1109/aero.2011.5747581.
Der volle Inhalt der QuelleKorvesis, Panagiotis, Stephane Besseau und Michalis Vazirgiannis. „Predictive Maintenance in Aviation: Failure Prediction from Post-Flight Reports“. In 2018 IEEE 34th International Conference on Data Engineering (ICDE). IEEE, 2018. http://dx.doi.org/10.1109/icde.2018.00160.
Der volle Inhalt der QuelleYuguo Xu, Yaohui Zhang und Shixin Zhang. „Uncertain generalized remaining useful life prediction-driven predictive maintenance decision“. In 2015 Prognostics and System Health Management Conference (PHM). IEEE, 2015. http://dx.doi.org/10.1109/phm.2015.7380097.
Der volle Inhalt der QuelleOlariu, Eliza Maria, Raluca Portase, Ramona Tolas und Rodica Potolea. „Predictive Maintenance - Exploring strategies for Remaining Useful Life (RUL) prediction“. In 2022 IEEE 18th International Conference on Intelligent Computer Communication and Processing (ICCP). IEEE, 2022. http://dx.doi.org/10.1109/iccp56966.2022.10053988.
Der volle Inhalt der Quellevan Driel, W. D., J. G. J. Beijer, J. W. Bikker, C. H. M. van Blokland, C. Ankomah und B. Jacobs. „Color maintenance prediction for LED-based products“. In 2018 19th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE). IEEE, 2018. http://dx.doi.org/10.1109/eurosime.2018.8369875.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "MAINTENANCE PREDICTION"
Ritchie, R. J., J. C. Notestine, J. S. Schmidt, J. N. Irvin und C. P. Vaziri. Prediction of Scheduled and Preventative Maintenance Workload. Fort Belvoir, VA: Defense Technical Information Center, Januar 1985. http://dx.doi.org/10.21236/ada153761.
Der volle Inhalt der QuelleBubenik, T. A., R. D. Fischer, G. R. Whitacre, D. J. Jones, J. F. Kiefner, M. Cola und W. A. Bruce. API-WCR Investigation and Prediction of Cooling Rates During Pipeline Maintenance Welding. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Dezember 1991. http://dx.doi.org/10.55274/r0011852.
Der volle Inhalt der QuelleLeis. L51866 Field Studies to Support SCC Life Prediction Model. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Januar 1997. http://dx.doi.org/10.55274/r0010357.
Der volle Inhalt der QuelleKim, Changmo, Ghazan Khan, Brent Nguyen und Emily L. Hoang. Development of a Statistical Model to Predict Materials’ Unit Prices for Future Maintenance and Rehabilitation in Highway Life Cycle Cost Analysis. Mineta Transportation Institute, Dezember 2020. http://dx.doi.org/10.31979/mti.2020.1806.
Der volle Inhalt der QuelleCheng und Wang. L52025 Calibration of the PRCI Thermal Analysis Model for Hot Tap Welding. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Januar 2004. http://dx.doi.org/10.55274/r0010298.
Der volle Inhalt der QuelleChurch, Joshua, LaKenya Walker und Amy Bednar. JAIC Predictive Maintenance Dashboard user manual. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41823.
Der volle Inhalt der QuelleBeen. L52121 Coating Deterioration as a Precursor for SCC. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Dezember 2004. http://dx.doi.org/10.55274/r0011093.
Der volle Inhalt der QuelleKlein, Gary A., Sallie E. Gordon, Mark Palmisano und Angelo Mirabella. Comparison-Based Predictions and Recommendations for Army Maintenance Training Devices. Fort Belvoir, VA: Defense Technical Information Center, März 1985. http://dx.doi.org/10.21236/ada170942.
Der volle Inhalt der QuelleUnknown, Author. WINMOP-R03 Performance of Offshore Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Juni 2003. http://dx.doi.org/10.55274/r0011744.
Der volle Inhalt der QuelleFoster, Michelle. Vibration Analysis - Presented to the MMWG Predictive Maintenance User’s Group. Office of Scientific and Technical Information (OSTI), August 2023. http://dx.doi.org/10.2172/1996132.
Der volle Inhalt der Quelle