Auswahl der wissenschaftlichen Literatur zum Thema „Massive gravitation“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Massive gravitation" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Massive gravitation"

1

Baiderin, A. A., I. P. Denisova und V. S. Rostovsky. „Exact plane-wave solution of equations of gravitation theory with massive graviton“. Izvestiya vysshikh uchebnykh zavedenii. Fizika 64, Nr. 1 (2021): 10–15. http://dx.doi.org/10.17223/00213411/64/1/10.

Der volle Inhalt der Quelle
Annotation:
The theory of gravitation with a massive graviton, which was proposed by Visser, is considered. The exact solution of this theory is found when the source of the gravitational field is plane scalar wave. The Hamilton-Jacobi method obtained the laws of motion of massive and massless particles in this gravitational field.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Argyris, John, und Corneliu Ciubotariu. „Massive Gravitons in General Relativity“. Australian Journal of Physics 50, Nr. 5 (1997): 879. http://dx.doi.org/10.1071/p97002.

Der volle Inhalt der Quelle
Annotation:
In the framework of a generalisation of linear gravitation to the case when the gravitons have nonzero rest mass, we obtain a result analogous to that obtained by Regge and Wheeler, that is, the energy of the gravitational waves is trapped in the ‘material’ (interior) metric of the curved space–time. We show that the concept of a nonzero rest mass graviton may be defined in two ways: (i) phenomenologically, by introducing of a mass term in the linear Lagrangian density, as in Proca electrodynamics, and (ii) self-consistently, by solving Einstein’s equations in the conformally flat case. We find that the rest mass of the graviton may be given in terms of the three fundamental constants (gravitational, Planck, and light velocity constants) and it is a function of the density of cosmic matter.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ahmed, Shohel, und Md Showkat Ali. „Numerical Relativity: Solving Geodesics equation for Massive Particle Around Black Holes Horizon“. GANIT: Journal of Bangladesh Mathematical Society 35 (28.06.2016): 79–85. http://dx.doi.org/10.3329/ganit.v35i0.28571.

Der volle Inhalt der Quelle
Annotation:
General relativity is the most beautiful physical theory ever invented. It describes one of the most pervasive features of the world we experience - gravitation. The gravitational field acts on nearby matter defines by the curvature of space-time. The black holes of nature are the most perfect macroscopic objects there are in the universe that constructed our concept of space-time. In this paper we use Einstein’s general relativity to model the motions of massive particles around the two black holes: static and rotating. These equations of motion around black holes will be studied with special focus towards the variation of symmetry by the change of gravitational effect.GANIT J. Bangladesh Math. Soc.Vol. 35 (2015) 79-85
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Eingorn, Maxim. „Cosmological law of universal gravitation“. International Journal of Modern Physics D 26, Nr. 10 (20.08.2017): 1750121. http://dx.doi.org/10.1142/s0218271817501218.

Der volle Inhalt der Quelle
Annotation:
Without exceeding the limits of the conventional ΛCDM paradigm, we argue for Yukawa law of interparticle interaction as the law of gravitation in the real expanding inhomogeneous universe. It covers the whole space and comes up to take place of Newtonian gravity, which is restricted exclusively to sub-horizon distances. The large-scale screening of gravitational interaction between every two nonrelativistic massive particles is ensured by the homogeneous cosmological background (specifically, by the nonzero average rest mass density of nonrelativistic matter). We take advantage of the uniform matter distribution case (i.e. the homogeneous universe limit) to demonstrate superiority of Yukawa gravity. Attention is also devoted to the concrete particular case of inhomogeneity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Yadav, Ranjit Prasad. „Theory of General Relativity: Historical Perspective“. Academic Voices: A Multidisciplinary Journal 4 (28.03.2015): 49–52. http://dx.doi.org/10.3126/av.v4i0.12358.

Der volle Inhalt der Quelle
Annotation:
General relativity was developed by Albert Einstein near about 100 Years ago. This article attempt to give an outline about the brief history of general theory of relativity and to understand the background to the theory we have to look at how theories of gravitation developed. Before the advent of GR, Newton's law of gravitation had been accepted for more than two hundred years as a valid description of the gravitational force between masses i.e. gravity was the result of an attractive force between massive objects. General relativity has developed in to an essential tool in modern astrophysics. It provides the foundation for the understanding of black holes, regions of space where gravitational attraction is strong that not even light can escape and also a part of the big bang model of cosmology.DOI: http://dx.doi.org/10.3126/av.v4i0.12358Academic Voices Vol.4 2014: 49-52
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bhattacharjee, Dr Iresh Ranjan. „Biological Phenomena Mimic Astrophysical Principles Of Gravitation – Opening Perspective“. Volume 1 Issue 6 1, Nr. 6 (31.08.2018): 1–16. http://dx.doi.org/10.31426/ijamsr.2018.1.6.611.

Der volle Inhalt der Quelle
Annotation:
It is conjectured that phenomena in biological microworld could be equated with astrophysical principles of gravitation. Fluids, gases that constitute 50-90 % of the total accredited biomass causes seclusion from stronger external gravitational fields. Seclusion due to buoyant condition is reflected in apparent ‘weight’ reduced. The g-value (self) to the tune of nanometer per second square in a massive body of a planet may be negligible, but in an isolated living mass at picometer distance, such acceleration is quite a significant force. Homogeneous and heterogeneous accretion; heating and cooling phenomena as well as the rhythmic pattern of growth due to elastic collisions in massive star; heat transfer mechanisms viz. radiation, (perspiration), conduction and convection; site of human core body temperature at liver, kidney, heart and parts of brain at central region under initial circular fetus situation; or coldest part of the periphery at toe, foot, hand demonstrates similarity between biological and astrophysical words
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

ACCIOLY, ANTONIO, RUBEN ALDROVANDI und RICARDO PASZKO. „IS THE EQUIVALENCE PRINCIPLE DOOMED FOREVER TO DANTE'S INFERNO ON ACCOUNT OF QUANTUM MECHANICS?“ International Journal of Modern Physics D 15, Nr. 12 (Dezember 2006): 2249–55. http://dx.doi.org/10.1142/s0218271806009686.

Der volle Inhalt der Quelle
Annotation:
It is commonly assumed that the equivalence principle can coexist without conflict with quantum mechanics. We shall argue here that, contrary to popular belief, this principle does not hold in quantum mechanics. We illustrate this point by computing the second-order correction for the scattering of a massive scalar boson by a weak gravitational field, treated as an external field. The resulting cross-section turns out to be mass-dependent. A way out of this dilemma would be, perhaps, to consider gravitation without the equivalence principle. At first sight, this seems to be a too much drastic attitude toward general relativity. Fortunately, the teleparallel version of general relativity — a description of the gravitational interaction by a force similar to the Lorentz force of electromagnetism and that, of course, dispenses with the equivalence principle — is equivalent to general relativity, thus providing a consistent theory for gravitation in the absence of the aforementioned principle.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Garcia de Andrade, L. C. „Torsion, massive electrodynamics and gravitation induced by scalar fields“. Astrophysics and Space Science 198, Nr. 1 (1992): 79–83. http://dx.doi.org/10.1007/bf00644301.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Geracie, Michael, Kartik Prabhu und Matthew M. Roberts. „Curved non-relativistic spacetimes, Newtonian gravitation and massive matter“. Journal of Mathematical Physics 56, Nr. 10 (Oktober 2015): 103505. http://dx.doi.org/10.1063/1.4932967.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bessada, Dennis, und Oswaldo D. Miranda. „CMB polarization in theories of gravitation with massive gravitons“. Classical and Quantum Gravity 26, Nr. 4 (29.01.2009): 045005. http://dx.doi.org/10.1088/0264-9381/26/4/045005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Dissertationen zum Thema "Massive gravitation"

1

Higgs, Tim D. „Optical and near infrared properties of massive galaxies“. Thesis, University of Portsmouth, 2014. https://researchportal.port.ac.uk/portal/en/theses/optical-and-near-infrared-properties-of-massive-galaxies(de9bfef2-67bd-45f1-bd7d-d54e08566237).html.

Der volle Inhalt der Quelle
Annotation:
In this thesis, we present a comparison of the evolution of the massive galaxies in the 7.8Gyr since redshift z=1 to the evolution predicted from galaxy formation models. Observing the most massive galaxies in the Universe at high redshift is challenging due to their red colours, owing to both their intrinsically red Spectral Energy Distributions (SEDs) and their redshift. In Chapter 1, We produce a method using catalogue-level data to produce matched aperture photometry for the SDSS and UKIDSS surveys in order to extend the wavelength coverage of a sample of galaxies in order to improve the precision with which models can be fitted to photometric data for these high redshift galaxies. Our matched photometry has consistent colours with those of the full processing of SDSS+UKIDSS images performed by the GAMA survey, and produces magnitudes within ∼0.1 magnitudes of the GAMA photometry for all galaxies. This is reduced to within 0.04 magnitudes when all blended sources are excluded. We compute stellar masses by fitting a Maraston et al. (2009) LRG model to both our derived photometry and that of the GAMA processing, and find that our photometry’s best fit stellar masses are within ∼0.2 dex of that which comes from the GAMA photometry, demonstrating that the method is consistent with that of a full processing, and that it is possible to quickly compute matched photometry for large area surveys of complimentary wavelength coverage. This is of vital importance for upcoming surveys e.g. DES, VISTA, EUCLID etc. Fitting Stellar Population Models to galaxy photometry is a widely used technique in order to convert from observables (colours, magnitudes) to physical properties (mass, absolute magnitude, age). In spite of their widespread use, the optical and Near Infrared (NIR) properties of stellar population models are still subject to debate. Two of the most commonly used models are those of (Maraston, 2005) (M05) and (Bruzual & Charlot, 2003) (BC03), which can differ greatly in the NIR due to the M05 models’ inclusion of the TP-AGB phase, which was neglected for BC03 models. We explore the ability of these models to reproduce measured optical+NIR properties of galaxies in Chapter 3. We produce matched optical+NIR photometry for the subsample of the galaxies surveyed by Zibetti et al. (2013) (Z13) which lie within the UKIDSS imaging area in an attempt to reproduce the findings of Z13, who conclude that their optical and NIR spectroscopy is better fit by models from Bruzual & Charlot (2003) than similar models from Maraston et al (2005). We compare the observed optical+NIR Spectral Energy Distributions (SEDs) to those of BC03 and M05 models, as well as the approximate Z13 NIR fluxes. Z13 found that M05 models fitted to the optical data and extrapolated into the NIR displayed excess flux in the NIR relative to the data, and BC03 models are better at reproducing the data. However, we show that our data is consistent with both sets of models, and on average brighter in the NIR than that of Z13. We also compare the strength of spectral features in the optical to rest frame optical and optical-NIR colours, and show that our set of Composite Stellar Population (CSP) models agree well with data, with a preference for the M05 models, showing the validity of using these models on massive galaxies. A measurement of the Stellar Mass Function (SMF) of galaxies is a powerful tool in detecting evolution of the galaxy population. With a statistically complete sample of a galaxy population down to a given stellar mass, it is possible to calculate a statistically complete SMF down to this mass. Comparison of the shape of this SMF to that of a similar sample over a different redshift interval allows the evolution of galaxies over this redshift interval to be calculated, in order to determine whether these galaxies are forming stars, merging or simply passively evolving. For this purpose, in 4 compute matched SDSS+UKIDSS photometry for the AA omega KIDSS SDSS (AUS) survey. This is a 145.416 deg² area survey of Luminous Red Galaxies (LRGs) from redshift z∼0.5 to z∼1 located within Stripe 82. We fit this photometry to a Maraston et al. (2009) Luminous Red Galaxy (LRG) template to give stellar masses, and scale masses according to the magnitude difference between the matched photometry and the SDSS model photometry in order to produce “total” stellar masses. We produce a volume-weighted SMF for the survey, and find that our SMF is consistent with the Maraston et al. (2013) SMF from the BOSS survey, meaning that the most massive galaxies in the universe are evolving passively from z=1 to the present day, which is a challenge to hierarchical models of galaxy formation. Comparison of observed SMFs to those produced by galaxy formation models is a method of testing the ability of the models to reproduce the evolution displayed by the real galaxy population. This is therefore a test of the physics included within the models, with the level of agreement between the simulation and the real galaxy SMF being indicative of whether the modelling has incorporated all the processes in action in the real universe. In order to test the ability of the state of the art semi analytical models of Henriques et al. (2013) (H13 hereafter), we compare SMFs of the simulated galaxies to those of the AUS and BOSS surveys in Chapter 5. The H13 galaxies were tailored via the application of both the AUS and BOSS colour and magnitude cuts, and SMFs calculated within lightcones of the same area as the surveys in order to compare equal volumes. Our findings extend the conclusions of Maraston et al. (2013), namely that the most massive galaxies in the simulations are not sufficiently massive to agree with the observed galaxy population at this redshift. By extending this analysis to redshift z∼1, we can confirm that the discrepancy is larger at higher redshift, with the difference between the most massive galaxies in the simulations and those observed being log(ΔM/M⊙) ≃0.2 at z≃0.6–0.7, whereas going beyond this to the range z≃0.7–1 the difference becomes log(ΔM/M⊙) ≃0.25, as can be seen in Figure 5.6, which demonstrates that the simulations are failing to either form, or assemble, the mass quickly enough to reproduce the observations. Instead, the simulations continue to assemble mass through to low redshift at a higher rate than is seen in the galaxy SMF. These discrepancies may indicate that the physics of the simulations is not fully accounting for the real processes in the Universe,and that we do not yet have a model capable of reproducing the galaxy population in the real universe. Clearly semi analytical galaxy simulations need to be modified in order to reproduce the observations, before being further challenged by upcoming spectroscopic surveys of galaxies at redshifts as high as z=2 eg. eBoss, DESI.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Pelisson, Sophie. „Etude d'états atomiques à proximité d'une surface massive : application à l'expérience FORCA-G“. Observatoire de Paris (1667-....), 2012. https://theses.hal.science/tel-00788325.

Der volle Inhalt der Quelle
Annotation:
Ce mémoire présente la modélisation théorique de l'expérience FORCA-G (FORce de CAsimir et Gravitation à courte distance) actuellement en cours de développement à l'Observatoire de Paris. L'objet de cette expérience est la mesure des interactions à courte portée entre un atome et une surface massive. Les interactions recherchées sont du type électrodynamique quantique (effet Casimir-Polder) et gravitationnelle. Le travail présenté ici a consisté à calculer les états des atomes dans le contexte de l'expérience afin de prévoir les signaux et les performances de l'expérience. Ceci a permis l'optimisation du schéma expérimental pour la mesure à la fois de l'effet Casimir-Polder à une précision non encore atteinte ainsi que pour la recherche de déviations de la loi de Newton prédites pour les théories d'unification
This thesis presents the theoretical modeling of the experiment FORCA-G (FORce de CAsimir et Gravitation à courte distance) currently in progress at Paris Observatory. The purpose of this experiment is to measure short-range interactions between an atom and a massive surface. This interaction are of two kind : quantum electrodynamical (Casimir-Polder effect) and gravitationnal. The work presented here was to calculate atomic states in the context of the experiment such that we can predict results and performances of the experiment. This has allowed to optimize the experimental scheme both for the high-precision measurement of the Casimir-Polder effect and for the search of deviation from Newton's law of gravity predicted by unification theories
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Mazuet, Charles. „Cosmologies with massive gravitons and their properties“. Thesis, Tours, 2018. http://www.theses.fr/2018TOUR4029/document.

Der volle Inhalt der Quelle
Annotation:
La cosmologie en général et plus particulièrement le problème de la constante cosmologique sont d'une extrême importance et une ouverture vers une nouvelle physique. En effet grâce à la découverte de l’accélération de l’expansion de l’Univers, un tout nouveau groupe de théories est apparu. Jusqu’à présent la théorie utilisée pour décrire l’Univers à grande échelle était la Relativité Générale, mais maintenant plusieurs théories alternatives sont de bons candidats pour décrire et étudier le comportement de notre Univers à grande échelle. Parmi ces théories, la gravité massive sans fantôme (dRGT), propose d’ajouter une masse au graviton dans le but de simuler une constante cosmologique au lieu d’utiliser ce que l’on appelle l’énergie noire. Il a été prouvé que cette théorie est cohérente, mais aujourd’hui l’existence de cosmologies viables fournies par cette dernière est toujours une question ouverte. Au début de ma thèse, j’ai obtenu une procédure permettant d’obtenir toutes les solutions du type de Sitter dans la théorie dROT, en utilisant l’espace de Sitter comme espace physique et une métrique de référence plate dépendante d’un champ de Stuckelberg noté T(t,r). Une autre partie de ma thèse a été consacrée à l’analyse des perturbations anisotropes autour d’une des solutions mentionnées précédemment, pour pouvoir étudier la stabilité des solutions cosmologiques au sein de cette théorie. J’ai aussi exploré la possibilité de répondre à une question de longue date, qui est l’origine de la matière noire en utilisant la théorie dRGT. En effet l’idée est de partir de cette dernière pour obtenir une théorie mathématiquement et physiquement cohérente d’un champ massif de spin-2 sur un fond arbitraire, Ainsi, à la place de décrire l’énergie noire, j’ai conjecturé que le champ maintenant décrit pouvait faire partie de la matière noire, dont la nature est une des grandes questions de la physique moderne
Cosmology in general and the cosmological constant problem are highly important as an insight on new physics. Indeed thanks to the discovery of the accelerating expansion of the Universe a whole bunch of new theories appeared. Until then, the General Relativity was the theory describing the Universe at large scale, but now several alternatives are good candidates to provide a better description about the large scale behaviour of our Universe. Among these theories, there is one called ghost-free Massive Gravity which gives the graviton a mass in order to mimic the cosmological constant instead of using the so-called dark energy. This theory was proved to be consistent but, until nowadays, the existence of viable cosmologies is still an on-going issue. In the first part of this thesis, we investigated a procedure to obtain all de Sitter solutions in dRGT theory, using de Sitter space as the physical space, with at reference metric depending on a Stuckelberg field T(t; r). The second part is devoted to the analysis of the anistropic perturbations around one of this solution, to investigate the stability of the cosmology of the theory. In the last part, we explore the posibility to answer a long-standing question, using the ghost-free Massive Gravity as a starting point in order to obtain a consistent theory of a massive spin-2 field on an arbitrary background. This time, instead of describing the dark energy, we conjecture that this field can be a part of dark matter, which is one of the substantial question for modern physics
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Pelisson, Sophie. „Étude d'états atomiques à proximité d'une surface massive - Application à l'expérience FORCA-G“. Phd thesis, Observatoire de Paris, 2012. http://tel.archives-ouvertes.fr/tel-00788325.

Der volle Inhalt der Quelle
Annotation:
Ce mémoire présente la modélisation théorique de l'expérience FORCA-G (FORce de CAsimir et Gravitation à courte distance) actuellement en cours de développement à l'Observatoire de Paris. L'objet de cette expérience est la mesure des interactions à courte portée entre un atome et une surface massive. Les interactions recherchées sont du type électrodynamique quantique (effet Casimir-Polder) et gravitationnelle. Le travail présenté ici a consisté à calculer les états des atomes dans le contexte de l'expérience afin de prévoir les signaux et les performances de l'expérience. Ceci a permis l'optimisation du schéma expérimental pour la mesure à la fois de l'effet Casimir-Polder à une précision non encore atteinte ainsi que pour la recherche de déviations à la loi de Newton prédites par les théories d'unification.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Nogueira, Pedro Henrique Fusco. „Modelos para partículas massivas de spin-2 via tensor simétrico“. Universidade Estadual Paulista (UNESP), 2018. http://hdl.handle.net/11449/152896.

Der volle Inhalt der Quelle
Annotation:
Submitted by Pedro Henrique Fusco Nogueira null (pedrofusconogueira@gmail.com) on 2018-03-04T20:59:18Z No. of bitstreams: 1 Dissertação Final.pdf: 530386 bytes, checksum: 67ed197e0d666d071b9b062d11c6ee5f (MD5)
Approved for entry into archive by Pamella Benevides Gonçalves null (pamella@feg.unesp.br) on 2018-03-05T19:05:49Z (GMT) No. of bitstreams: 1 nogueira_phf_me_guara.pdf: 530386 bytes, checksum: 67ed197e0d666d071b9b062d11c6ee5f (MD5)
Made available in DSpace on 2018-03-05T19:05:49Z (GMT). No. of bitstreams: 1 nogueira_phf_me_guara.pdf: 530386 bytes, checksum: 67ed197e0d666d071b9b062d11c6ee5f (MD5) Previous issue date: 2018-02-26
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Neste trabalho buscamos encontrar a teoria mais geral para partículas massivas de spin-2 via tensor simétrico. Começamos expondo o caminho que seguiremos para calcular a amplitude de dois pontos saturada por fontes e obter o conteúdo físico de uma dada teoria livre. Como primeira tentativa partimos de uma teoria semelhante a teoria de Fierz-Pauli, mas com termo de massa generalizado. Após isto exploramos uma densidade lagrangiana mais geral, com no máximo duas derivadas. Em ambos os casos retornamos a teoria de Fierz-Pauli como a única viável. Em busca de maior generalidade, posteriormente, propomos uma densidade lagrangiana com coeficientes arbitrários e com potência arbitrária nas derivadas, relacionamos os coeficientes desta teoria com os coeficientes da densidade lagrangiana encontrada anteriormente na literatura via imersão de Euler das equações de Fierz Pauli, o propósito foi verificar se existe uma teoria mais geral que esta última. Por último, a fim de complementar o assunto tratado neste trabalho, verificaremos as consequências de uma dada simetria local no conteúdo físico de uma teoria, de spin-2 massiva.
In this project we seek to find the most general theory for massive particles of spin-2 through symmetric tensor. We begin by the path we will follow to calculate the amplitude of two points, saturated by sources, and obtain physical contente of a free theory. As first attempt, we started with a theory similar to the Fierz-Pauli’s theory, but with a generalized mass term. After this we explored a more general Lagrangian density, with two derivatives in the most. In both cases we return to the Fierz-Pauli’s theory as the only viable one. In search of a greater generality, we later propoused a Lafrangian density with arbitrary coefficients and arbitrary power in the derivatives. We related the coefficients of this theory with the Lagrangian density’s coefficients found previously in the literature through imersão de Euler of the Fierz-Pauli’s equations. The purpose was to verify if there is a more general theory than this last one. Finally, in order to complemente the subject discussed in this paper, we will verify the consequences of a certain local symmetry on the physical contente of a massive spin-2 theory
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ziour, Riad. „Cosmologie et modifications à grandes distances de l'interaction gravitationnelle“. Phd thesis, Université Paris-Diderot - Paris VII, 2010. http://tel.archives-ouvertes.fr/tel-00560440.

Der volle Inhalt der Quelle
Annotation:
Dans le cadre de la relativité générale, l'observation de la phase actuelle d'accélération de l'expansion de l'Univers soulève de nombreuses questions car elle semble indiquer l'existence d'une "énergie noire" dont on ne connaît pas la nature. Afin de pouvoir expliquer l'accélération de l'Univers sans énergie noire, d'autres théories de la gravité ont été proposées. Cette thèse est consacrée à l'étude de certaines de ces théories de gravité modifiée, ainsi qu'aux méthodes d'observation qui peuvent les contraindre. La première partie de cette thèse présente un panorama des théories de gravité modifiée ainsi que leurs motivations. La seconde partie analyse les théories de gravité massive et le mécanisme dit « de Vainshtein », qui permet à certaines solutions de la gravité massive de différer fortement de la relativité générale aux échelles cosmologiques tout en satisfaisant les contraintes expérimentales au sein du système solaire. La validité de ce mécanisme y est démontré pour la première fois, au travers de l'étude de certaines solutions à symétrie sphérique. La troisième partie traite des modifications scalaires de la gravité ; un nouveau modèle de gravité scalaire y est notamment proposé, inspiré du mécanisme de Vainshtein de la gravité massive. Enfin, la quatrième partie décrit les différentes observations locales, astrophysiques et cosmologiques, susceptibles de contraindre les théories de gravité modifiée.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Poulin, Vivian. „Gravitational and electromagnetic signatures of massive relics in Cosmology“. Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY112.

Der volle Inhalt der Quelle
Annotation:
Malgré leurs succès impressionnants, la Cosmologie et la Physique des Particules font face à de profonds problèmes qui ont fait se questionner des générations de Physiciens. L’un de ces fameux mystères consiste en la présence de 85% de matière froide, n’interagissant que sous l’effet de la gravitation, appelée matière noire dans le contenu total en matière de notre Univers. Un autre de ces mystères est apparue après la découverte du phénomène d’oscillation des neutrinos. Celui-ci indique que les neutrinos ont une masse, certes faible mais non nulle, ce qui ne s’explique pas de manière satisfaisante dans le cadre du modèle standard de la physique des particules. Ce travail s’attaque à ces énigmes de longues dates en recherchant les signatures électromagnétiques et gravitationnelles de particules massives prédites par certains modèles dans les sondes cosmologiques à disposition, i.e. i) les anisotropies du fond diffus cosmologique; ii) les distorsions spectrales du fond diffus cosmologique; iii) les relevés des grandes structures; iv) la nucléosynthèse primordiale. Après avoir introduit tous les outils nécessaires pour calculer ces observables, nous utilisons les dernières données disponibles et estimons le potentiel des futures expériences à détecter ces nouvelles particules. Nous nous concentrons tout d’abord sur l’impact purement gravitationnel de particules massives instables, afin de calculer les contraintes à ce jour les plus fortes sur la durée de vie et l’abondance de telles particules. Une des avancées majeures de ce travail consiste en l’étude de modèles à plusieurs composantes de matière noire, révélant une phénoménologie très riche. Ces résultats, robustes et indépendants du modèle considéré, représentent les contraintes minimums que toute particule composant la matière noire doit satisfaire. Dans un second temps, nous nous intéressons aux désintégrations électromagnétiques de ces particules et comparons la sensibilité des différentes sondes cosmologiques. En guise d’exemple, nous appliquons nos résultats à des modèles spécifiques choisis dans la littérature moderne. Nous montrons notamment qu’une lacune de la théorie des cascades électromagnétiques permet de résoudre le problème du Lithium cosmologique grâce à la désintégration d’un neutrino stérile après la nucléosynthèse primordiale. Nous étudions ensuite l’impact de l’annihilation de particules de matière noire sur le fond diffus cosmologique, en nous concentrant en particulier sur l’annihilation de ces particules dans les halos de matière noire, et étudions leur rôle complémentaire aux étoiles pour ré-ioniser notre Univers. La partie finale de ce travail est dévouée à la détermination des propriétés des neutrinos à travers les sondes cosmologiques actuelles et futures. Nous démontrons notamment: i) qu’il est possible de tirer des conclusions robustes quant à la détection cosmologique de ces neutrinos par les expériences mesurant le fond diffus cosmologique; ii) que l’analyse conjointe des données des futures expériences sur le fond diffus cosmologique et de celles sur les structures aux grandes échelles devraient permettre la première détection cosmologique de la masse des neutrinos. Nos résultats soulignent la complémentarité des différentes sondes, ainsi que la nécessité de réaliser des analyses combinées de ces sondes, lors de la recherche de nouvelle physique, tout particulièrement à l’époque de la cosmologie de précision
Beside their great successes, Cosmology and Particle Physics are facing deep issues that have been puzzling physicists for a long time. In particular, 85% of the matter content in our Universe is in the form a cold, non-interacting component, whose only impacts have been probed through gravity. On the other hand, the discovery of neutrino oscillations point towards the existence of tiny but non-vanishing neutrino masses, a phenomenon that cannot be successfully explained within the Standard Model of Particle Physics. This work tries to tackle the Dark Matter and neutrino masses canondrums, by looking for electromagnetic and gravitational signatures of peculiar massive relics onto Cosmological probesthat have been developed over the years. In particular, we study the impact on i) CMB temperature and polarization anisotropies; ii) Large Scale Structure surveys; iii) Spectral distortions of the CMB blackbody spectrum; iv) and Big Bang Nucleosynthesis.After a thorough review of all necessary tools to compute those observables, we make use of the latest data from present experiments, and forecast the potential for detection of future ones. We firstly focus on the purely gravitational effects of a decaying massive relics, deriving the strongest constraints to date from the pure gravitational effects of the decay and extending the phenomenology to multicomponent models with very high decay rate. Those constraints represent robust, vastly model independent bounds that any massive relic has to satisfy.In a second step, we switch on electromagnetic channels and compare the relative constraining power of non-thermal Big Bang nucleosynthesis, CMB spectral distortions and statistics of CMB anisotropies. As an example, we apply our results to specific models taken from the literature, and show that a loophole to the standard theory of e.m. cascade allow to solve the cosmological Lithium problem thanks to photon injection. We then study the impact of annihilating relics, with a special emphasis on annihilations in halos and its synergy with stars in reionizing our Universe.The last part of this work is devoted to the cosmological determination of neutrino properties with current and future data. We assess that: i) it is possible to make a robust statement about the detection of the cosmic neutrino background by CMB experiments; ii) the joint analysis of future CMB and Large Scale Structure data should allow the first Cosmological detection of neutrino masses. Our results emphasize the complementarity of the different probes, and the need for combined analyses when looking for new physics, especially in the era of precision Cosmology
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Plowman, Joseph Eugene. „Constraining massive black hole population models with gravitational wave observations“. Thesis, Montana State University, 2010. http://etd.lib.montana.edu/etd/2010/plowman/PlowmanJ0510.pdf.

Der volle Inhalt der Quelle
Annotation:
A number of scenarios have been proposed for the origin of the supermassive black holes (SMBHs) that are found in the centres of most galaxies. Many such scenarios predict a high-redshift population of massive black holes (MBHs), with masses in the range 10² to 10⁵ times that of the Sun. When the Laser Interferometer Space Antenna (LISA) is finally operational, it is likely that it will detect on the order of 100 of these MBH binaries as they merge. The differences between proposed population models produce appreciable effects in the portion of the population which is detectable by LISA, so it is likely that the LISA observations will allow us to place constraints on them. However, gravitational wave detectors such as LISA will not be able to detect all such mergers nor assign precise black hole parameters to the merger, due to weak gravitational wave signal strengths. This dissertation explores LISA's ability to distinguish between several MBH population models. In this way, we go beyond predicting a LISA observed population and consider the extent to which LISA observations could inform astrophysical modelers. The errors in LISA parameter estimation are applied in two ways, with an 'Error Kernel' that is marginalized over astrophysically uninteresting 'sample' parameters, and with a more direct method which generates random sample parameters for each source in a population realization. We consider how the distinguishability varies depending on the choice of source parameters (1 or 2 parameters chosen from masses, redshift or spins) used to characterize the model distributions, with confidence levels determined by 1 or 2-dimensional tests based on the Kolmogorov-Smirnov test.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Phriksee, Anirut. „Mass estimation of massive galaxy clusters using weak gravitational lensing“. Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0544.

Der volle Inhalt der Quelle
Annotation:
Dans cette thèse, j’entreprend l'analyse en lentilles faibles de 279 amas de galaxies du relevé “COnstrain Dark Energy avec X-ray” (CODEX), à l'aide de données d'imagerie provenant des 4200 deg2 du relevé DECam Legacy Survey (DECaLS). Cet échantillon est issus d'une sélection conjointe en rayons X et en richesse optique, dans un intervalle de richesse 20 ≤ λ < 110 et de décalage vers le rouge 0,1 ≤ z ≤ 0,2. Je sépare l’échantillon en trois intervalles de richesse, λ = 20 - 30, 30 - 50 et 50 - 110. Je mesure l’excès de densité surfacique de masse cumulée et l’ajuste avec un profil NFW afin d’estimer la masse moyenne des amas dans chaque intervalle de richesse. De plus, j'étudie la relation d'échelle entre la masse (M 200c) et la richesse en supposant la relation (M 200c | λ rangle α M0 , (λ / 40) F λ . Je réalise un ajustement conjoint de toutes les mesures en lentille faible pour les amas individuels, et j’obtiens les valeurs de meilleur ajustement M {0} = 3,24 +0,29 - 0,27 times 10 14 text M {\odot} et F λ = 1,00 {+0.22} {-0.22}. Je trouve un excellent accord entre la relation d’échelle basée sur les lentilles faibles et la relation obtenue avec les masses dynamiques, ce qui pourrait suggérer que l'hypothèse d'équilibre dynamique qui sous-tend l'estimation de la masse dynamique des amas de galaxies est correcte en moyenne
In this work, I perform the weak lensing analysis of 279 galaxy clusters from the COnstrain Dark Energy with X-ray survey (CODEX), using imaging data from 4200 deg2 of the DECam Legacy Survey (DECaLS) Data Release 3. The CODEX cluster sample is built from a joint X-ray and optical richness selection. I select clusters in the richness range 20 ≤ λ < 110 and in the redshift range 0,1 ≤ z ≤ 0,2. I divide the cluster sample into three richness groups; λ = 20 - 30, 30 - 50 et 50 - 110. I measure the stacked excess surface mass density and fit it with a NFW profile to extract the mean cluster mass in each group. Moreover, I study the scaling relation between the cluster mass (M 200c) and the richness by assuming the mass-richness relation follows \left\langle M 200c | λ \right\rangle \propto M 0 , (λ / 40) F λ. I perform a joint fit of all the individual cluster weak lensing signal, and obtain the best-fit values, M 0 = 3.24 +0.29 - 0.27} \times 10 4 \text{M}_{\odot}, and F λ = 1.00 ^{+0.22}_{-0.22} for the richness scaling index. I find the resulting scaling relation to be in agreement with the mass estimates obtained for the three richness groups, thus confirming the validity of the power-law model assumption. I find an excellent agreement between the weak lensing based scaling relation and the relation obtained with dynamical masses, which might suggest that the dynamical equilibrium assumption underlying the dynamical mass estimation of galaxy clusters is correct on average
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Cespedes, Sebastian. „Effects of massive fields on the early universe“. Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/288556.

Der volle Inhalt der Quelle
Annotation:
Cosmology is one of the best tools to understand the physics that governs the universe at high energies. On one hand, inflation is a very robust mechanism to explain the initial conditions of the universe. On the other hand general relativity provides a solid framework for the formation of cosmic structures at cosmological scales. Nevertheless, there are still important issues that remain without a clear answer. For example, inflation still lacks of a concrete microphysical description, and also there is still no satisfactory mechanism to explain the late time acceleration of the universe. This thesis addresses these two topics. In the first part we discuss the effects of heavy degrees of freedom coupled to inflation. This has been an important topic over the years, because the experimental success might make it possible to detect new degrees of freedom in inflation. In chapter two we discuss the case when non relativistic heavy fields are coupled to the inflaton through a non minimal gravitational coupling. Here we find that, for certain geometries, the heavy field can modify the potential for a few e-folds, either stopping inflation, or setting its initial conditions. In chapter 3 we study the dynamics of fluctuations in holographic inspired models of multi-field inflation. We find that the entropy mass $\mu$ (the mass of the fluctuation orthogonal to the trajectory of inflation) satisfies an universal upper bound given by $\mu \leq 3 H / 2$. This bound coincides with the requirement of unitarity of conformal operators living on the boundary of the theory. In the second part of the thesis we study high energy effects on the Cosmic Microwave Background (CMB). In the fourth chapter we study the role of disformal transformation on cosmological backgrounds and its relation to the speed of sound for tensor modes. A speed different from one for tensor modes can arise in several contexts such as Galileons theories, or massive gravity. Nevertheless the speed is very constrained to be one by observations of gravitational wave emission. It has been shown that in inflation a disformal transformation allows the speed for tensor modes, to be set to one without making changes to the curvature power spectrum. We show that on the CMB, after doing the transformation, there is an imprint on the acoustic peaks, and the diffusion damping. This has interesting consequences: for a particular class of theories the transformation can be used to constrain the parameter space in different regimes. In chapter five we study the impact of gravitons with non-vanishing masses on the polarisation of th CMB . We also focus on putative modifications to the speed of the gravitational waves. We find that a change of the graviton speed shifts the acoustic peaks of the B-mode polarization and then could be easily constrained. In all cases when both massless and massive gravitons are present, we find that the B-mode CMB spectrum is characterised by a low $l$ plateau together with a shifted position for the first few peaks compared to a massless graviton spectrum. This shift depends on the mixing between the gravitons in their coupling to matter and could serve as a hint in favour of the existence of multiple gravitons.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Bücher zum Thema "Massive gravitation"

1

Kursunoglu, Behram N., Stephan L. Mintz und Arnold Perlmutter, Hrsg. Confluence of Cosmology, Massive Neutrinos, Elementary Particles, and Gravitation. Boston: Kluwer Academic Publishers, 2002. http://dx.doi.org/10.1007/b115171.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hoekstra, Hendrik. A weak lensing study of massive structures. [Groningen, The Netherlands]: Rijksuniversiteit Groningen, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Concepts of mass in contemporary physics and philosophy. Princton, N.J: Princeton University Press, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

1922-, Kurşunoğlu Behram, Mintz Stephan L und Perlmutter Arnold 1928-, Hrsg. Confluence of cosmology, massive neutrinos, elementary particles, and gravitation. New York: Kluwer Academic/Plenum Publishers, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Clayton, Michael A. Massive nonsymmetric gravitational theory: A Hamiltonian approach. 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Deruelle, Nathalie, und Jean-Philippe Uzan. Gravitational waves and the radiative field. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0053.

Der volle Inhalt der Quelle
Annotation:
This chapter turns to the gravitational radiation produced by a system of massive objects. The discussion is confined to the linear approximation of general relativity, which is compared with the Maxwell theory of electromagnetism. In the first part of the chapter, the properties of gravitational waves, which are the general solution of the linearized vacuum Einstein equations, are studied. Next, it relates these waves to the energy–momentum tensor of the sources creating them. The chapter then turns to the ‘first quadrupole formula’, giving the gravitational radiation field of these sources when their motion is due to forces other than the gravitational force.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Vigdor, Steven E. The Dark Side. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814825.003.0006.

Der volle Inhalt der Quelle
Annotation:
Chapter 6 deals with the remaining mysteries in cosmology—dark matter, dark energy, and inflationary expansion—and the experiments aimed at solving them. It reviews the evidence for dark matter, and experiments to detect the microscopic particles proposed as its constituents: weakly interacting massive particles and invisible axions. Contrasts are drawn between the failure to understand the scale of dark energy theoretically and the ambitious new survey telescopes, such as the Large Synoptic Survey Telescope (or LSST), that aim to constrain its equation of state. The theoretical concepts and possible experimental signatures of cosmic inflation are described. Searches for possible imprints from primordial inflation-induced gravitational waves on the polarization of the cosmic microwave background (CMB polarization) are discussed in the context of the pioneering first detection by the Laser Interferometer Gravitational-Wave Observatory (or LIGO) of gravitational waves from distant black-hole mergers. Philosophical questions regarding the falsifiability of inflation are raised.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Deruelle, Nathalie, und Jean-Philippe Uzan. The Schwarzschild black hole. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0047.

Der volle Inhalt der Quelle
Annotation:
This chapter discusses the Schwarzschild black hole. It demonstrates how, by a judicious change of coordinates, it is possible to eliminate the singularity of the Schwarzschild metric and reveal a spacetime that is much larger, like that of a black hole. At the end of its thermonuclear evolution, a star collapses and, if it is sufficiently massive, does not become stabilized in a new equilibrium configuration. The Schwarzschild geometry must therefore represent the gravitational field of such an object up to r = 0. This being said, the Schwarzschild metric in its original form is singular, not only at r = 0 where the curvature diverges, but also at r = 2m, a surface which is crossed by geodesics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Trieloff, Mario. Noble Gases. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190647926.013.30.

Der volle Inhalt der Quelle
Annotation:
This is an advance summary of a forthcoming article in the Oxford Encyclopedia of Planetary Science. Please check back later for the full article.Although the second most abundant element in the cosmos is helium, noble gases are also called rare gases. The reason is that they are not abundant on terrestrial planets like our Earth, which is characterized by orders of magnitude depletion of—particularly light—noble gases when compared to the cosmic element abundance pattern. Indeed, such geochemical depletion and enrichment processes make noble gases so versatile concerning planetary formation and evolution: When our solar system formed, the first small grains started to adsorb small amounts of noble gases from the protosolar nebula, resulting in depletion of light He and Ne when compared to heavy noble gases Ar, Kr, and Xe: the so-called planetary type abundance pattern. Subsequent flash heating of the first small mm to cm-sized objects (chondrules and calcium, aluminum rich inclusions) resulted in further depletion, as well as heating—and occasionally differentiation—on small planetesimals, which were precursors of larger planets and which we still find in the asteroid belt today from where we get rocky fragments in form of meteorites. In most primitive meteorites, we even can find tiny rare grains that are older than our solar system and condensed billions of years ago in circumstellar atmospheres of, for example, red giant stars. These grains are characterized by nucleosynthetic anomalies and particularly identified by noble gases, for example, so-called s-process xenon.While planetesimals acquired a depleted noble gas component strongly fractionated in favor of heavy noble gases, the sun and also gas giants like Jupiter attracted a much larger amount of gas from the protosolar nebula by gravitational capture. This resulted in a cosmic or “solar type” abundance pattern, containing the full complement of light noble gases. Contrary to Jupiter or the sun, terrestrial planets accreted from planetesimals with only minor contributions from the protosolar nebula, which explains their high degree of depletion and basically “planetary” elemental abundance pattern. Indeed this depletion enables another tool to be applied in noble gas geo- and cosmochemistry: ingrowth of radiogenic nuclides. Due to heavy depletion of primordial nuclides like 36Ar and 130Xe, radiogenic ingrowth of 40Ar by 40K decay, 129Xe by 129I decay, or fission Xe from 238U or 244Pu decay are precisely measurable, and allow insight in the chronology of fractionation of lithophile parent nuclides and atmophile noble gas daughters, mainly caused by mantle degassing and formation of the atmosphere.Already the dominance of 40Ar in the terrestrial atmosphere allowed C. F v. Weizsäcker to conclude that most of the terrestrial atmosphere originated by degassing of the solid Earth, which is an ongoing process today at mid ocean ridges, where primordial helium leaves the lithosphere for the first time. Mantle degassing was much more massive in the past; in fact, most of the terrestrial atmosphere formed during the first 100 million years of Earth´s history, and was completed at about the same time when the terrestrial core formed and accretion was terminated by a giant impact that also formed our moon. However, before that time, somehow also tiny amounts of solar noble gases managed to find their way into the mantle, presumably by solar wind irradiation of small planetesimals or dust accreting to Earth. While the moon-forming impact likely dissipated the primordial atmosphere, today´s atmosphere originated by mantle degassing and a late veneer with asteroidal and possibly cometary contributions. As other atmophile elements behave similar to noble gases, they also trace the origin of major volatiles on Earth, for example, water, nitrogen, sulfur, and carbon.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Massive gravitation"

1

Parisi, Luca, Ninfa Radicella und Gaetano Vilasi. „Stability of the Einstein Static Universe in Massive Gravity“. In Progress in Mathematical Relativity, Gravitation and Cosmology, 355–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40157-2_52.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Narlikar, Jayant V., und T. Padmanabhan. „Gravitating Massive Objects“. In Gravity, Gauge Theories and Quantum Cosmology, 195–233. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4508-1_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ludyk, Günter. „Gravitation einer kugelförmigen Masse“. In Relativitätstheorie nur mit Matrizen, 125–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-60658-2_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Fischer, Kurt. „Wie Masse Gravitation erzeugt“. In Relativitätstheorie in einfachen Worten, 85–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46966-8_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Freeman, K. C. „The Massive Dark Corona of Our Galaxy“. In Astrophysical Applications of Gravitational Lensing, 175–76. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0221-3_46.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Evans, Christopher, und Pablo Laguna. „Prompt Flare and Disk Formation in Tidal Disruptions by Massive Black Holes“. In Gravitational Wave Astrophysics, 129–35. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10488-1_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Sesana, A. „Pulsar Timing Arrays and the Challenge of Massive Black Hole Binary Astrophysics“. In Gravitational Wave Astrophysics, 147–65. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10488-1_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Petropoulos, P. Marios. „Gravitational Duality, Topologically Massive Gravity and Holographic Fluids“. In Modifications of Einstein's Theory of Gravity at Large Distances, 331–67. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10070-8_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Nakazato, K., K. Sumiyoshi und S. Yamada. „Gravitational Collapse and Neutrino Emission of Population III Massive Stars“. In ESO Astrophysics Symposia, 394–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74713-0_90.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Tresaco, E., A. Elipe und A. Riaguas. „Gravitational Potential of a Massive Disk. Dynamics Around an Annular Disk“. In Nonlinear Science and Complexity, 115–21. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-9884-9_14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Massive gravitation"

1

García, N. Montelongo, T. Zannias, Alfredo Herrera-Aguilar, Francisco S. Guzmán Murillo, Ulises Nucamendi Gómez und Israel Quiros. „Modeling Massive Dark Objects by a Wormhole Throat“. In GRAVITATION AND COSMOLOGY: Proceedings of the Third International Meeting on Gravitation and Cosmology. AIP, 2008. http://dx.doi.org/10.1063/1.3058565.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lattanzi, Massimiliano. „On the possible role of massive neutrinos in cosmological structure formation“. In COSMOLOGY AND GRAVITATION: Xth Brazilian School of Cosmology and Gravitation; 25th Anniversary (1977-2002). AIP, 2003. http://dx.doi.org/10.1063/1.1587102.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Klapp, Jaime. „Very Massive Stars and their Cosmological Consequences“. In GRAVITATION AND COSMOLOGY: 2nd Mexican Meeting on Mathematical and Experimental Physics. AIP, 2005. http://dx.doi.org/10.1063/1.1900515.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Pérez-Payán, S., M. Sabido, H. A. Morales-Tecotl, L. A. Urena-Lopez, R. Linares-Romero und H. H. Garcia-Compean. „Black Hole Evaporation in Hořava and New Massive Gravity“. In GRAVITATIONAL PHYSICS: TESTING GRAVITY FROM SUBMILLIMETER TO COSMIC: Proceedings of the VIII Mexican School on Gravitation and Mathematical Physics. AIP, 2010. http://dx.doi.org/10.1063/1.3473856.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Blas, Harold, und Hector Leny Carrion. „Some comments on the integrability of the noncommutative generalized massive Thirring model“. In 5th International School on Field Theory and Gravitation. Trieste, Italy: Sissa Medialab, 2009. http://dx.doi.org/10.22323/1.081.0042.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Castro, Luis Benito. „Absence of Klein's paradox for massive spinless bosons coupled by a nonminimal vector interaction“. In 5th International School on Field Theory and Gravitation. Trieste, Italy: Sissa Medialab, 2009. http://dx.doi.org/10.22323/1.081.0054.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Garbarz, Alan, Gaston Giribet, Andrés Goya und Mauricio Leston. „Quasilocal energy for three-dimensional massive gravity solutions with chiral deformations of AdS3 boundary conditions“. In II COSMOSUR: COSMOLOGY AND GRAVITATION IN THE SOUTHERN CONE. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4913346.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Beckwith, Andrew W. „Fifth-force potentials, compared to Yukawa modification of gravity for massive gravitons, to link gravitation, and NLED modified GR“. In Proceedings of the MG14 Meeting on General Relativity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813226609_0318.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

BRANDENBURG, J. E. „A THEORETICAL VALUE FOR THE NEWTON GRAVITATION CONSTANT FROM THE GEM THEORY OF FIELD UNIFICATION AND THE KURSUNOGLU-BRANDENBURG HYPOTHESIS OF MASSIVE GAMMA-RAY BURSTERS“. In Proceedings of the 32nd Coral Gables Conference. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701992_0013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Pilo, Luigi. „Gravitational Energy in Massive Gravity“. In XXIst International Europhysics Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.134.0076.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie