Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Massive gravitation.

Dissertationen zum Thema „Massive gravitation“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-32 Dissertationen für die Forschung zum Thema "Massive gravitation" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Higgs, Tim D. „Optical and near infrared properties of massive galaxies“. Thesis, University of Portsmouth, 2014. https://researchportal.port.ac.uk/portal/en/theses/optical-and-near-infrared-properties-of-massive-galaxies(de9bfef2-67bd-45f1-bd7d-d54e08566237).html.

Der volle Inhalt der Quelle
Annotation:
In this thesis, we present a comparison of the evolution of the massive galaxies in the 7.8Gyr since redshift z=1 to the evolution predicted from galaxy formation models. Observing the most massive galaxies in the Universe at high redshift is challenging due to their red colours, owing to both their intrinsically red Spectral Energy Distributions (SEDs) and their redshift. In Chapter 1, We produce a method using catalogue-level data to produce matched aperture photometry for the SDSS and UKIDSS surveys in order to extend the wavelength coverage of a sample of galaxies in order to improve the precision with which models can be fitted to photometric data for these high redshift galaxies. Our matched photometry has consistent colours with those of the full processing of SDSS+UKIDSS images performed by the GAMA survey, and produces magnitudes within ∼0.1 magnitudes of the GAMA photometry for all galaxies. This is reduced to within 0.04 magnitudes when all blended sources are excluded. We compute stellar masses by fitting a Maraston et al. (2009) LRG model to both our derived photometry and that of the GAMA processing, and find that our photometry’s best fit stellar masses are within ∼0.2 dex of that which comes from the GAMA photometry, demonstrating that the method is consistent with that of a full processing, and that it is possible to quickly compute matched photometry for large area surveys of complimentary wavelength coverage. This is of vital importance for upcoming surveys e.g. DES, VISTA, EUCLID etc. Fitting Stellar Population Models to galaxy photometry is a widely used technique in order to convert from observables (colours, magnitudes) to physical properties (mass, absolute magnitude, age). In spite of their widespread use, the optical and Near Infrared (NIR) properties of stellar population models are still subject to debate. Two of the most commonly used models are those of (Maraston, 2005) (M05) and (Bruzual & Charlot, 2003) (BC03), which can differ greatly in the NIR due to the M05 models’ inclusion of the TP-AGB phase, which was neglected for BC03 models. We explore the ability of these models to reproduce measured optical+NIR properties of galaxies in Chapter 3. We produce matched optical+NIR photometry for the subsample of the galaxies surveyed by Zibetti et al. (2013) (Z13) which lie within the UKIDSS imaging area in an attempt to reproduce the findings of Z13, who conclude that their optical and NIR spectroscopy is better fit by models from Bruzual & Charlot (2003) than similar models from Maraston et al (2005). We compare the observed optical+NIR Spectral Energy Distributions (SEDs) to those of BC03 and M05 models, as well as the approximate Z13 NIR fluxes. Z13 found that M05 models fitted to the optical data and extrapolated into the NIR displayed excess flux in the NIR relative to the data, and BC03 models are better at reproducing the data. However, we show that our data is consistent with both sets of models, and on average brighter in the NIR than that of Z13. We also compare the strength of spectral features in the optical to rest frame optical and optical-NIR colours, and show that our set of Composite Stellar Population (CSP) models agree well with data, with a preference for the M05 models, showing the validity of using these models on massive galaxies. A measurement of the Stellar Mass Function (SMF) of galaxies is a powerful tool in detecting evolution of the galaxy population. With a statistically complete sample of a galaxy population down to a given stellar mass, it is possible to calculate a statistically complete SMF down to this mass. Comparison of the shape of this SMF to that of a similar sample over a different redshift interval allows the evolution of galaxies over this redshift interval to be calculated, in order to determine whether these galaxies are forming stars, merging or simply passively evolving. For this purpose, in 4 compute matched SDSS+UKIDSS photometry for the AA omega KIDSS SDSS (AUS) survey. This is a 145.416 deg² area survey of Luminous Red Galaxies (LRGs) from redshift z∼0.5 to z∼1 located within Stripe 82. We fit this photometry to a Maraston et al. (2009) Luminous Red Galaxy (LRG) template to give stellar masses, and scale masses according to the magnitude difference between the matched photometry and the SDSS model photometry in order to produce “total” stellar masses. We produce a volume-weighted SMF for the survey, and find that our SMF is consistent with the Maraston et al. (2013) SMF from the BOSS survey, meaning that the most massive galaxies in the universe are evolving passively from z=1 to the present day, which is a challenge to hierarchical models of galaxy formation. Comparison of observed SMFs to those produced by galaxy formation models is a method of testing the ability of the models to reproduce the evolution displayed by the real galaxy population. This is therefore a test of the physics included within the models, with the level of agreement between the simulation and the real galaxy SMF being indicative of whether the modelling has incorporated all the processes in action in the real universe. In order to test the ability of the state of the art semi analytical models of Henriques et al. (2013) (H13 hereafter), we compare SMFs of the simulated galaxies to those of the AUS and BOSS surveys in Chapter 5. The H13 galaxies were tailored via the application of both the AUS and BOSS colour and magnitude cuts, and SMFs calculated within lightcones of the same area as the surveys in order to compare equal volumes. Our findings extend the conclusions of Maraston et al. (2013), namely that the most massive galaxies in the simulations are not sufficiently massive to agree with the observed galaxy population at this redshift. By extending this analysis to redshift z∼1, we can confirm that the discrepancy is larger at higher redshift, with the difference between the most massive galaxies in the simulations and those observed being log(ΔM/M⊙) ≃0.2 at z≃0.6–0.7, whereas going beyond this to the range z≃0.7–1 the difference becomes log(ΔM/M⊙) ≃0.25, as can be seen in Figure 5.6, which demonstrates that the simulations are failing to either form, or assemble, the mass quickly enough to reproduce the observations. Instead, the simulations continue to assemble mass through to low redshift at a higher rate than is seen in the galaxy SMF. These discrepancies may indicate that the physics of the simulations is not fully accounting for the real processes in the Universe,and that we do not yet have a model capable of reproducing the galaxy population in the real universe. Clearly semi analytical galaxy simulations need to be modified in order to reproduce the observations, before being further challenged by upcoming spectroscopic surveys of galaxies at redshifts as high as z=2 eg. eBoss, DESI.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Pelisson, Sophie. „Etude d'états atomiques à proximité d'une surface massive : application à l'expérience FORCA-G“. Observatoire de Paris (1667-....), 2012. https://theses.hal.science/tel-00788325.

Der volle Inhalt der Quelle
Annotation:
Ce mémoire présente la modélisation théorique de l'expérience FORCA-G (FORce de CAsimir et Gravitation à courte distance) actuellement en cours de développement à l'Observatoire de Paris. L'objet de cette expérience est la mesure des interactions à courte portée entre un atome et une surface massive. Les interactions recherchées sont du type électrodynamique quantique (effet Casimir-Polder) et gravitationnelle. Le travail présenté ici a consisté à calculer les états des atomes dans le contexte de l'expérience afin de prévoir les signaux et les performances de l'expérience. Ceci a permis l'optimisation du schéma expérimental pour la mesure à la fois de l'effet Casimir-Polder à une précision non encore atteinte ainsi que pour la recherche de déviations de la loi de Newton prédites pour les théories d'unification
This thesis presents the theoretical modeling of the experiment FORCA-G (FORce de CAsimir et Gravitation à courte distance) currently in progress at Paris Observatory. The purpose of this experiment is to measure short-range interactions between an atom and a massive surface. This interaction are of two kind : quantum electrodynamical (Casimir-Polder effect) and gravitationnal. The work presented here was to calculate atomic states in the context of the experiment such that we can predict results and performances of the experiment. This has allowed to optimize the experimental scheme both for the high-precision measurement of the Casimir-Polder effect and for the search of deviation from Newton's law of gravity predicted by unification theories
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Mazuet, Charles. „Cosmologies with massive gravitons and their properties“. Thesis, Tours, 2018. http://www.theses.fr/2018TOUR4029/document.

Der volle Inhalt der Quelle
Annotation:
La cosmologie en général et plus particulièrement le problème de la constante cosmologique sont d'une extrême importance et une ouverture vers une nouvelle physique. En effet grâce à la découverte de l’accélération de l’expansion de l’Univers, un tout nouveau groupe de théories est apparu. Jusqu’à présent la théorie utilisée pour décrire l’Univers à grande échelle était la Relativité Générale, mais maintenant plusieurs théories alternatives sont de bons candidats pour décrire et étudier le comportement de notre Univers à grande échelle. Parmi ces théories, la gravité massive sans fantôme (dRGT), propose d’ajouter une masse au graviton dans le but de simuler une constante cosmologique au lieu d’utiliser ce que l’on appelle l’énergie noire. Il a été prouvé que cette théorie est cohérente, mais aujourd’hui l’existence de cosmologies viables fournies par cette dernière est toujours une question ouverte. Au début de ma thèse, j’ai obtenu une procédure permettant d’obtenir toutes les solutions du type de Sitter dans la théorie dROT, en utilisant l’espace de Sitter comme espace physique et une métrique de référence plate dépendante d’un champ de Stuckelberg noté T(t,r). Une autre partie de ma thèse a été consacrée à l’analyse des perturbations anisotropes autour d’une des solutions mentionnées précédemment, pour pouvoir étudier la stabilité des solutions cosmologiques au sein de cette théorie. J’ai aussi exploré la possibilité de répondre à une question de longue date, qui est l’origine de la matière noire en utilisant la théorie dRGT. En effet l’idée est de partir de cette dernière pour obtenir une théorie mathématiquement et physiquement cohérente d’un champ massif de spin-2 sur un fond arbitraire, Ainsi, à la place de décrire l’énergie noire, j’ai conjecturé que le champ maintenant décrit pouvait faire partie de la matière noire, dont la nature est une des grandes questions de la physique moderne
Cosmology in general and the cosmological constant problem are highly important as an insight on new physics. Indeed thanks to the discovery of the accelerating expansion of the Universe a whole bunch of new theories appeared. Until then, the General Relativity was the theory describing the Universe at large scale, but now several alternatives are good candidates to provide a better description about the large scale behaviour of our Universe. Among these theories, there is one called ghost-free Massive Gravity which gives the graviton a mass in order to mimic the cosmological constant instead of using the so-called dark energy. This theory was proved to be consistent but, until nowadays, the existence of viable cosmologies is still an on-going issue. In the first part of this thesis, we investigated a procedure to obtain all de Sitter solutions in dRGT theory, using de Sitter space as the physical space, with at reference metric depending on a Stuckelberg field T(t; r). The second part is devoted to the analysis of the anistropic perturbations around one of this solution, to investigate the stability of the cosmology of the theory. In the last part, we explore the posibility to answer a long-standing question, using the ghost-free Massive Gravity as a starting point in order to obtain a consistent theory of a massive spin-2 field on an arbitrary background. This time, instead of describing the dark energy, we conjecture that this field can be a part of dark matter, which is one of the substantial question for modern physics
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Pelisson, Sophie. „Étude d'états atomiques à proximité d'une surface massive - Application à l'expérience FORCA-G“. Phd thesis, Observatoire de Paris, 2012. http://tel.archives-ouvertes.fr/tel-00788325.

Der volle Inhalt der Quelle
Annotation:
Ce mémoire présente la modélisation théorique de l'expérience FORCA-G (FORce de CAsimir et Gravitation à courte distance) actuellement en cours de développement à l'Observatoire de Paris. L'objet de cette expérience est la mesure des interactions à courte portée entre un atome et une surface massive. Les interactions recherchées sont du type électrodynamique quantique (effet Casimir-Polder) et gravitationnelle. Le travail présenté ici a consisté à calculer les états des atomes dans le contexte de l'expérience afin de prévoir les signaux et les performances de l'expérience. Ceci a permis l'optimisation du schéma expérimental pour la mesure à la fois de l'effet Casimir-Polder à une précision non encore atteinte ainsi que pour la recherche de déviations à la loi de Newton prédites par les théories d'unification.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Nogueira, Pedro Henrique Fusco. „Modelos para partículas massivas de spin-2 via tensor simétrico“. Universidade Estadual Paulista (UNESP), 2018. http://hdl.handle.net/11449/152896.

Der volle Inhalt der Quelle
Annotation:
Submitted by Pedro Henrique Fusco Nogueira null (pedrofusconogueira@gmail.com) on 2018-03-04T20:59:18Z No. of bitstreams: 1 Dissertação Final.pdf: 530386 bytes, checksum: 67ed197e0d666d071b9b062d11c6ee5f (MD5)
Approved for entry into archive by Pamella Benevides Gonçalves null (pamella@feg.unesp.br) on 2018-03-05T19:05:49Z (GMT) No. of bitstreams: 1 nogueira_phf_me_guara.pdf: 530386 bytes, checksum: 67ed197e0d666d071b9b062d11c6ee5f (MD5)
Made available in DSpace on 2018-03-05T19:05:49Z (GMT). No. of bitstreams: 1 nogueira_phf_me_guara.pdf: 530386 bytes, checksum: 67ed197e0d666d071b9b062d11c6ee5f (MD5) Previous issue date: 2018-02-26
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Neste trabalho buscamos encontrar a teoria mais geral para partículas massivas de spin-2 via tensor simétrico. Começamos expondo o caminho que seguiremos para calcular a amplitude de dois pontos saturada por fontes e obter o conteúdo físico de uma dada teoria livre. Como primeira tentativa partimos de uma teoria semelhante a teoria de Fierz-Pauli, mas com termo de massa generalizado. Após isto exploramos uma densidade lagrangiana mais geral, com no máximo duas derivadas. Em ambos os casos retornamos a teoria de Fierz-Pauli como a única viável. Em busca de maior generalidade, posteriormente, propomos uma densidade lagrangiana com coeficientes arbitrários e com potência arbitrária nas derivadas, relacionamos os coeficientes desta teoria com os coeficientes da densidade lagrangiana encontrada anteriormente na literatura via imersão de Euler das equações de Fierz Pauli, o propósito foi verificar se existe uma teoria mais geral que esta última. Por último, a fim de complementar o assunto tratado neste trabalho, verificaremos as consequências de uma dada simetria local no conteúdo físico de uma teoria, de spin-2 massiva.
In this project we seek to find the most general theory for massive particles of spin-2 through symmetric tensor. We begin by the path we will follow to calculate the amplitude of two points, saturated by sources, and obtain physical contente of a free theory. As first attempt, we started with a theory similar to the Fierz-Pauli’s theory, but with a generalized mass term. After this we explored a more general Lagrangian density, with two derivatives in the most. In both cases we return to the Fierz-Pauli’s theory as the only viable one. In search of a greater generality, we later propoused a Lafrangian density with arbitrary coefficients and arbitrary power in the derivatives. We related the coefficients of this theory with the Lagrangian density’s coefficients found previously in the literature through imersão de Euler of the Fierz-Pauli’s equations. The purpose was to verify if there is a more general theory than this last one. Finally, in order to complemente the subject discussed in this paper, we will verify the consequences of a certain local symmetry on the physical contente of a massive spin-2 theory
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ziour, Riad. „Cosmologie et modifications à grandes distances de l'interaction gravitationnelle“. Phd thesis, Université Paris-Diderot - Paris VII, 2010. http://tel.archives-ouvertes.fr/tel-00560440.

Der volle Inhalt der Quelle
Annotation:
Dans le cadre de la relativité générale, l'observation de la phase actuelle d'accélération de l'expansion de l'Univers soulève de nombreuses questions car elle semble indiquer l'existence d'une "énergie noire" dont on ne connaît pas la nature. Afin de pouvoir expliquer l'accélération de l'Univers sans énergie noire, d'autres théories de la gravité ont été proposées. Cette thèse est consacrée à l'étude de certaines de ces théories de gravité modifiée, ainsi qu'aux méthodes d'observation qui peuvent les contraindre. La première partie de cette thèse présente un panorama des théories de gravité modifiée ainsi que leurs motivations. La seconde partie analyse les théories de gravité massive et le mécanisme dit « de Vainshtein », qui permet à certaines solutions de la gravité massive de différer fortement de la relativité générale aux échelles cosmologiques tout en satisfaisant les contraintes expérimentales au sein du système solaire. La validité de ce mécanisme y est démontré pour la première fois, au travers de l'étude de certaines solutions à symétrie sphérique. La troisième partie traite des modifications scalaires de la gravité ; un nouveau modèle de gravité scalaire y est notamment proposé, inspiré du mécanisme de Vainshtein de la gravité massive. Enfin, la quatrième partie décrit les différentes observations locales, astrophysiques et cosmologiques, susceptibles de contraindre les théories de gravité modifiée.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Poulin, Vivian. „Gravitational and electromagnetic signatures of massive relics in Cosmology“. Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY112.

Der volle Inhalt der Quelle
Annotation:
Malgré leurs succès impressionnants, la Cosmologie et la Physique des Particules font face à de profonds problèmes qui ont fait se questionner des générations de Physiciens. L’un de ces fameux mystères consiste en la présence de 85% de matière froide, n’interagissant que sous l’effet de la gravitation, appelée matière noire dans le contenu total en matière de notre Univers. Un autre de ces mystères est apparue après la découverte du phénomène d’oscillation des neutrinos. Celui-ci indique que les neutrinos ont une masse, certes faible mais non nulle, ce qui ne s’explique pas de manière satisfaisante dans le cadre du modèle standard de la physique des particules. Ce travail s’attaque à ces énigmes de longues dates en recherchant les signatures électromagnétiques et gravitationnelles de particules massives prédites par certains modèles dans les sondes cosmologiques à disposition, i.e. i) les anisotropies du fond diffus cosmologique; ii) les distorsions spectrales du fond diffus cosmologique; iii) les relevés des grandes structures; iv) la nucléosynthèse primordiale. Après avoir introduit tous les outils nécessaires pour calculer ces observables, nous utilisons les dernières données disponibles et estimons le potentiel des futures expériences à détecter ces nouvelles particules. Nous nous concentrons tout d’abord sur l’impact purement gravitationnel de particules massives instables, afin de calculer les contraintes à ce jour les plus fortes sur la durée de vie et l’abondance de telles particules. Une des avancées majeures de ce travail consiste en l’étude de modèles à plusieurs composantes de matière noire, révélant une phénoménologie très riche. Ces résultats, robustes et indépendants du modèle considéré, représentent les contraintes minimums que toute particule composant la matière noire doit satisfaire. Dans un second temps, nous nous intéressons aux désintégrations électromagnétiques de ces particules et comparons la sensibilité des différentes sondes cosmologiques. En guise d’exemple, nous appliquons nos résultats à des modèles spécifiques choisis dans la littérature moderne. Nous montrons notamment qu’une lacune de la théorie des cascades électromagnétiques permet de résoudre le problème du Lithium cosmologique grâce à la désintégration d’un neutrino stérile après la nucléosynthèse primordiale. Nous étudions ensuite l’impact de l’annihilation de particules de matière noire sur le fond diffus cosmologique, en nous concentrant en particulier sur l’annihilation de ces particules dans les halos de matière noire, et étudions leur rôle complémentaire aux étoiles pour ré-ioniser notre Univers. La partie finale de ce travail est dévouée à la détermination des propriétés des neutrinos à travers les sondes cosmologiques actuelles et futures. Nous démontrons notamment: i) qu’il est possible de tirer des conclusions robustes quant à la détection cosmologique de ces neutrinos par les expériences mesurant le fond diffus cosmologique; ii) que l’analyse conjointe des données des futures expériences sur le fond diffus cosmologique et de celles sur les structures aux grandes échelles devraient permettre la première détection cosmologique de la masse des neutrinos. Nos résultats soulignent la complémentarité des différentes sondes, ainsi que la nécessité de réaliser des analyses combinées de ces sondes, lors de la recherche de nouvelle physique, tout particulièrement à l’époque de la cosmologie de précision
Beside their great successes, Cosmology and Particle Physics are facing deep issues that have been puzzling physicists for a long time. In particular, 85% of the matter content in our Universe is in the form a cold, non-interacting component, whose only impacts have been probed through gravity. On the other hand, the discovery of neutrino oscillations point towards the existence of tiny but non-vanishing neutrino masses, a phenomenon that cannot be successfully explained within the Standard Model of Particle Physics. This work tries to tackle the Dark Matter and neutrino masses canondrums, by looking for electromagnetic and gravitational signatures of peculiar massive relics onto Cosmological probesthat have been developed over the years. In particular, we study the impact on i) CMB temperature and polarization anisotropies; ii) Large Scale Structure surveys; iii) Spectral distortions of the CMB blackbody spectrum; iv) and Big Bang Nucleosynthesis.After a thorough review of all necessary tools to compute those observables, we make use of the latest data from present experiments, and forecast the potential for detection of future ones. We firstly focus on the purely gravitational effects of a decaying massive relics, deriving the strongest constraints to date from the pure gravitational effects of the decay and extending the phenomenology to multicomponent models with very high decay rate. Those constraints represent robust, vastly model independent bounds that any massive relic has to satisfy.In a second step, we switch on electromagnetic channels and compare the relative constraining power of non-thermal Big Bang nucleosynthesis, CMB spectral distortions and statistics of CMB anisotropies. As an example, we apply our results to specific models taken from the literature, and show that a loophole to the standard theory of e.m. cascade allow to solve the cosmological Lithium problem thanks to photon injection. We then study the impact of annihilating relics, with a special emphasis on annihilations in halos and its synergy with stars in reionizing our Universe.The last part of this work is devoted to the cosmological determination of neutrino properties with current and future data. We assess that: i) it is possible to make a robust statement about the detection of the cosmic neutrino background by CMB experiments; ii) the joint analysis of future CMB and Large Scale Structure data should allow the first Cosmological detection of neutrino masses. Our results emphasize the complementarity of the different probes, and the need for combined analyses when looking for new physics, especially in the era of precision Cosmology
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Plowman, Joseph Eugene. „Constraining massive black hole population models with gravitational wave observations“. Thesis, Montana State University, 2010. http://etd.lib.montana.edu/etd/2010/plowman/PlowmanJ0510.pdf.

Der volle Inhalt der Quelle
Annotation:
A number of scenarios have been proposed for the origin of the supermassive black holes (SMBHs) that are found in the centres of most galaxies. Many such scenarios predict a high-redshift population of massive black holes (MBHs), with masses in the range 10² to 10⁵ times that of the Sun. When the Laser Interferometer Space Antenna (LISA) is finally operational, it is likely that it will detect on the order of 100 of these MBH binaries as they merge. The differences between proposed population models produce appreciable effects in the portion of the population which is detectable by LISA, so it is likely that the LISA observations will allow us to place constraints on them. However, gravitational wave detectors such as LISA will not be able to detect all such mergers nor assign precise black hole parameters to the merger, due to weak gravitational wave signal strengths. This dissertation explores LISA's ability to distinguish between several MBH population models. In this way, we go beyond predicting a LISA observed population and consider the extent to which LISA observations could inform astrophysical modelers. The errors in LISA parameter estimation are applied in two ways, with an 'Error Kernel' that is marginalized over astrophysically uninteresting 'sample' parameters, and with a more direct method which generates random sample parameters for each source in a population realization. We consider how the distinguishability varies depending on the choice of source parameters (1 or 2 parameters chosen from masses, redshift or spins) used to characterize the model distributions, with confidence levels determined by 1 or 2-dimensional tests based on the Kolmogorov-Smirnov test.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Phriksee, Anirut. „Mass estimation of massive galaxy clusters using weak gravitational lensing“. Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0544.

Der volle Inhalt der Quelle
Annotation:
Dans cette thèse, j’entreprend l'analyse en lentilles faibles de 279 amas de galaxies du relevé “COnstrain Dark Energy avec X-ray” (CODEX), à l'aide de données d'imagerie provenant des 4200 deg2 du relevé DECam Legacy Survey (DECaLS). Cet échantillon est issus d'une sélection conjointe en rayons X et en richesse optique, dans un intervalle de richesse 20 ≤ λ < 110 et de décalage vers le rouge 0,1 ≤ z ≤ 0,2. Je sépare l’échantillon en trois intervalles de richesse, λ = 20 - 30, 30 - 50 et 50 - 110. Je mesure l’excès de densité surfacique de masse cumulée et l’ajuste avec un profil NFW afin d’estimer la masse moyenne des amas dans chaque intervalle de richesse. De plus, j'étudie la relation d'échelle entre la masse (M 200c) et la richesse en supposant la relation (M 200c | λ rangle α M0 , (λ / 40) F λ . Je réalise un ajustement conjoint de toutes les mesures en lentille faible pour les amas individuels, et j’obtiens les valeurs de meilleur ajustement M {0} = 3,24 +0,29 - 0,27 times 10 14 text M {\odot} et F λ = 1,00 {+0.22} {-0.22}. Je trouve un excellent accord entre la relation d’échelle basée sur les lentilles faibles et la relation obtenue avec les masses dynamiques, ce qui pourrait suggérer que l'hypothèse d'équilibre dynamique qui sous-tend l'estimation de la masse dynamique des amas de galaxies est correcte en moyenne
In this work, I perform the weak lensing analysis of 279 galaxy clusters from the COnstrain Dark Energy with X-ray survey (CODEX), using imaging data from 4200 deg2 of the DECam Legacy Survey (DECaLS) Data Release 3. The CODEX cluster sample is built from a joint X-ray and optical richness selection. I select clusters in the richness range 20 ≤ λ < 110 and in the redshift range 0,1 ≤ z ≤ 0,2. I divide the cluster sample into three richness groups; λ = 20 - 30, 30 - 50 et 50 - 110. I measure the stacked excess surface mass density and fit it with a NFW profile to extract the mean cluster mass in each group. Moreover, I study the scaling relation between the cluster mass (M 200c) and the richness by assuming the mass-richness relation follows \left\langle M 200c | λ \right\rangle \propto M 0 , (λ / 40) F λ. I perform a joint fit of all the individual cluster weak lensing signal, and obtain the best-fit values, M 0 = 3.24 +0.29 - 0.27} \times 10 4 \text{M}_{\odot}, and F λ = 1.00 ^{+0.22}_{-0.22} for the richness scaling index. I find the resulting scaling relation to be in agreement with the mass estimates obtained for the three richness groups, thus confirming the validity of the power-law model assumption. I find an excellent agreement between the weak lensing based scaling relation and the relation obtained with dynamical masses, which might suggest that the dynamical equilibrium assumption underlying the dynamical mass estimation of galaxy clusters is correct on average
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Cespedes, Sebastian. „Effects of massive fields on the early universe“. Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/288556.

Der volle Inhalt der Quelle
Annotation:
Cosmology is one of the best tools to understand the physics that governs the universe at high energies. On one hand, inflation is a very robust mechanism to explain the initial conditions of the universe. On the other hand general relativity provides a solid framework for the formation of cosmic structures at cosmological scales. Nevertheless, there are still important issues that remain without a clear answer. For example, inflation still lacks of a concrete microphysical description, and also there is still no satisfactory mechanism to explain the late time acceleration of the universe. This thesis addresses these two topics. In the first part we discuss the effects of heavy degrees of freedom coupled to inflation. This has been an important topic over the years, because the experimental success might make it possible to detect new degrees of freedom in inflation. In chapter two we discuss the case when non relativistic heavy fields are coupled to the inflaton through a non minimal gravitational coupling. Here we find that, for certain geometries, the heavy field can modify the potential for a few e-folds, either stopping inflation, or setting its initial conditions. In chapter 3 we study the dynamics of fluctuations in holographic inspired models of multi-field inflation. We find that the entropy mass $\mu$ (the mass of the fluctuation orthogonal to the trajectory of inflation) satisfies an universal upper bound given by $\mu \leq 3 H / 2$. This bound coincides with the requirement of unitarity of conformal operators living on the boundary of the theory. In the second part of the thesis we study high energy effects on the Cosmic Microwave Background (CMB). In the fourth chapter we study the role of disformal transformation on cosmological backgrounds and its relation to the speed of sound for tensor modes. A speed different from one for tensor modes can arise in several contexts such as Galileons theories, or massive gravity. Nevertheless the speed is very constrained to be one by observations of gravitational wave emission. It has been shown that in inflation a disformal transformation allows the speed for tensor modes, to be set to one without making changes to the curvature power spectrum. We show that on the CMB, after doing the transformation, there is an imprint on the acoustic peaks, and the diffusion damping. This has interesting consequences: for a particular class of theories the transformation can be used to constrain the parameter space in different regimes. In chapter five we study the impact of gravitons with non-vanishing masses on the polarisation of th CMB . We also focus on putative modifications to the speed of the gravitational waves. We find that a change of the graviton speed shifts the acoustic peaks of the B-mode polarization and then could be easily constrained. In all cases when both massless and massive gravitons are present, we find that the B-mode CMB spectrum is characterised by a low $l$ plateau together with a shifted position for the first few peaks compared to a massless graviton spectrum. This shift depends on the mixing between the gravitons in their coupling to matter and could serve as a hint in favour of the existence of multiple gravitons.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Wong, Kenneth C., Catie Raney, Charles R. Keeton, Keiichi Umetsu, Ann I. Zabludoff, S. Mark Ammons und K. Decker French. „Joint Strong and Weak Lensing Analysis of the Massive Cluster Field J0850+3604“. IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/625302.

Der volle Inhalt der Quelle
Annotation:
We present a combined strong and weak lensing analysis of the J085007.6+360428 (J0850) field, which contains the massive cluster Zwicky 1953. This field was selected for its high projected concentration of luminous red galaxies. Using Subaru/Suprime-Cam BVR(c)I(c)i'z' imaging and MMT/Hectospec spectroscopy, we first perform a weak lensing shear analysis to constrain the mass distribution in this field, including the cluster at z = 0.3774 and a smaller foreground halo at z = 0.2713. We then add a strong lensing constraint from a multiply imaged galaxy in the imaging data with a photometric redshift of z approximate to 5.03. Unlike previous cluster-scale lens analyses, our technique accounts for the full three-dimensional mass structure in the beam, including galaxies along the line of sight. In contrast with past cluster analyses that used only lensed image positions as constraints, we use the full surface brightness distribution of the images. This method predicts that the source galaxy crosses a lensing caustic, such that one image is a highly magnified "fold arc" that could be used to probe the source galaxy's structure at ultra-high spatial resolution (< 30 pc). We calculate the mass of the primary cluster to be M-vir = 2.93(-0.65)(+0.71) x 10(15) M-circle dot. with a concentration of C-vir = 3.46(-0.59)(+0.70), consistent with the mass-concentration relation of massive clusters at a similar redshift. The large mass of this cluster makes J0850 an excellent field for leveraging lensing magnification to search for high-redshift galaxies, competitive with and complementary to that of well-studied clusters such as the HST Frontier Fields.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Uchida, Haruki. „Black Hole Formation, Explosion and Gravitational Wave Emission from Rapidly Rotating Very Massive Stars“. Kyoto University, 2019. http://hdl.handle.net/2433/242595.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Oldham, Lindsay Joanna. „The evolution of dark and luminous structure in massive early-type galaxies“. Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/267989.

Der volle Inhalt der Quelle
Annotation:
In this thesis, I develop and combine strong lensing and dynamical probes of the mass of early-type galaxies (ETGs) in order to improve our understanding of their dark and luminous mass structure and evolution. Firstly, I demonstrate that the dark matter halo of our nearest brightest cluster galaxy (BCG), M87, is centrally cored relative to the predictions of dark-matter-only models, and suggest an interpretation of this result in terms of dynamical heating due to the infall of satellite galaxies. Conversely, I find that the haloes of a sample of 12 field ETGs are strongly cusped, consistent with adiabatic contraction models due to the initial infall of gas. I suggest an explanation for these differences in which the increased rate of merging and accretion experienced by ETGs in dense environments leads to increased amounts of halo heating and expansion, such that the signature of the halo's initial contraction is erased in BCGs but retained in more isolated systems. Secondly, I find evidence that the stellar-mass-to-light ratio declines with increasing radius in both field and cluster ETGs. With M87, I show that the strength of this gradient cannot be explained by trends in stellar metallicity or age if the stellar initial mass function (IMF) is spatially uniform, but that an IMF which becomes increasing bottom-heavy towards the galaxy centre can fully reproduce the inference on the stellar mass. Finally, I use the sizes, stellar masses and luminous structures of two samples of massive ETGs at redshift z ~ 0.6 to set constraints on the mechanisms of ETG growth. I find that ETGs in dense cluster environments already lie on the local size-mass relation at this redshift, contrary to their isolated counterparts, and suggest that this may be evidence for their accelerated growth at early times due to the higher incidence of merger events in clusters. I also show that massive compact ETGs at this redshift are composed of a compact, red, spheroidal core surrounded by a more extended, diffuse, bluer envelope, which may be a structural imprint of their ongoing inside-out growth. Overall, the studies presented in this thesis suggest a coherent scenario for ETG evolution which is dominated by hierarchical processes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Fantina, A. F. „SUPERNOVAE THEORY: STUDY OF ELECTRO-WEAK PROCESSES DURING GRAVITATIONAL COLLAPSE OF MASSIVE STARS“. Phd thesis, Université Paris Sud - Paris XI, 2010. http://tel.archives-ouvertes.fr/tel-00566480.

Der volle Inhalt der Quelle
Annotation:
La physique des supernovae requiert la connaissance soit des phénomènes complexes hydrodynamiques dans la matière dense (comme le transport d'énergie et des neutrinos, le traitement du choc) soit de la microphysique liée à la physique des noyaux et de la matière nucléaire dans la matière dense et chaude. Dans le cadre de la théorie des supernovae de type II, la plus part des simulations numériques qui simulent l'effondrement du coeur de supernova jusqu'à la formation et la propagation de l'onde du choc n'arrive pas à reproduire l'explosion des couches extérieures des étoiles massives. La raison pour cela pourrait être due soit aux phénomènes hydrodynamiques comme la rotation, la convection, ou bien la relativité générale, soit aux processus microphysiques qui ne sont pas très bien connus dans ce domaine de densités, températures et asymétries. Le but de ce travail de thèse est d'étudier l'effet de certaines processus microphysiques, en particulier les processus électro-faibles, qui jouent un rôle fondamental pendant l'effondrement gravitationnel, et d'analyser leur impact avec une simulation hydrodynamique. Parmi les processus microphysiques qui interviennent lors d'un effondrement de supernova, le plus important processus électro-faible est la capture électronique sur les protons libres et sur les noyaux. La capture est essentielle pour déterminer l'évolution de la fraction leptonique dans le coeur pendant la phase de neutronisation. Elle a un impact sur l'efficacité du rebond et, par conséquent, sur l'énergie de l'onde du choc. De plus, l'équation d'état de la matière et les taux de capture électronique sur les noyaux sont modifiés par la masse effective des nucléons dans les noyaux, due aux correlations à multi-corps dans le milieu dense, et à sa dépendence de la température. Après une introduction générale qui contient une revue de la phénoménologie des supernovae en appuyant sur la nécessité de la connaissance des données nucléaires pour les simulations numériques, dans la première partie de la thèse les aspects nucléaires abordés dans ce travail sont présentés. Le Chapitre 2 est constitué par une courte introduction sur les concepts importantes qui sont développés dans la Partie I et utilisés dans la Partie II de la thèse; en particulier: la théorie du champ moyen, de l'appariement en approximation BCS, la définition de masse effective en connexion avec la densité des niveaux et l'énergie de symétrie. Dans le Chapitre 3, un modèle nucléaire dont le but est d'améliorer la densité d'états autours du niveau de Fermi dans les noyaux est présenté. On a inclu dans l'approche de la fonctionnelle de la densité une masse effective piquée en surface qui simule certains effets au delà de Hartree-Fock. Cela a été possible en ajoutant un terme à la fonctionnelle de Skyrme qui puisse reproduire l'augmentation de la masse effective et de la densité d'états à la surface de Fermi, comme attendu par les données expérimentales. On a étudié l'impact de ce nouveau terme sur les propriétés de champ moyen dans les noyaux 40Ca et 208Pb, et sur les propriétés d'appariement à température nulle et à température finie dans le noyau 120Sn. On a aussi commencé des nouveaux calculs pour évaluer la dépendance en température de la masse effective dans l'approche microphysique de la RPA, dont les résultats préliminaires sont montrés dans l'Appendice D. Cette partie nucléaire est complétée par une appendice (Appendice B), qui donne les détails des paramétrisations de Skyrme utilisées dans le texte, et par l'Appendice C qui analyse la dépendence de la température de la masse effective en connection avec le paramètre de densité des niveaux qui peut être extrait par les expériences de physique nucléaire. La deuxième partie de la thèse est dediée aux modèles de supernova sur lequels j'ai travaillé. On présente les résultats obtenus avec un approche à une zone, et deux modèles monodimensionnels en symétrie sphérique: newtonien et en relativité générale. Bien que un modèle en symétrie sphérique n'est pas capable de saisir tous les aspects complexes du phénomène de supernova, et les observations des vitesses des étoiles à neutrons ou des inhomogéneitées des éjecta requièrent l'inclusion dans les simulations des effets multidimensionnels, un modèle monodimensionnel permet un premier étude détaillé de l'impact des différentes données microphysiques en focalisant l'analyse sur l'incertitude des données de physique nucléaire. Après une introduction générale faite dans le Chapitre 4 qui décrit les principals ingrédients des différentes simulations numériques (comme le traitement du choc et le transport de neutrinos), les codes sur lequels j'ai travaillé sont illustrés en détail. Le Chapitre 5 présente un modèle à une zone, où le coeur de supernova a été approximé par une sphère de densité homogène. Bien que ceci est un modèle simple, il est capable de reproduire de façon qualitative (et quantitative dans ses ordres de grandeur) la "trajectoire" d'effondrement (i.e. l'évolution des grandeurs thérmodynamiques le long de l'effondrement). Dans ce cadre, on a évalué l'impact de la dépendance en température de l'énergie de symétrie (via la dépendance en température de la masse effective) dans la dymanique du collapse, et on a montré que, en incluant cette dépendance en température, la deleptonisation dans le coeur est systématiquement réduite et l'effet sur l'énergie du choc est non-négligeable. Ces résultats nous ont conduit à effectuer des simulations plus réalistes, en employant un code monodimensionnel newtonien en symétrie sphérique, avec transport des neutrinos. La description de ce code, développé par P. Blottiau et Ph. Mellor au CEA,DAM,DIF, est l'object du Chapitre 6. On a inclu dans l'équation d'état dérivée par Bethe et al.(BBAL), aussi utilisée dans le code à une zone, la même paramétrisation de la masse effective, qui agit à la fois sur les Q-valeurs des taux de capture et sur l'équation d'état du système. Les résultats de ces simulations ont confirmés ceux qui avaient été obtenus avec le code one-zone, c'est à dire la reduction systématique de la deleptonisation dans le coeur si on inclue la dépendance en température de l'énergie de symétrie. De plus, on en a estimé l'impact sur la position de la formation de l'onde du choc, qui est déplacée vers l'extérieur d'une quantité non-négligeable. On a aussi travaillé pour inclure dans le code l'équation d'état plus récente de Lattimer et Swesty. Enfin, le Chapitre 7 décrit un code, à l'origine développé par le groupe de Valence, écrit en rélativité générale et qui utilise un approche moderne pour le traitment du choc (la "capture du choc"). Bien que ce modèle ne contient pas le transport des neutrinos, l'équation de l'évolution de la fraction neutrinique est déjà écrite avec un schema multi-groupe qui permet une première analyse spectrale des neutrinos. On étudie l'effet de l'équation d'état dans la dynamique d'effondrement ainsi que l'impact de la capture électronique. Une versione newtonienne a été aussi implémentée et les résultats obtenus sont en accord avec la littérature. Cette partie est complétée par plusieurs appendices. Dans l'Appendice A, les différentes unités de mesure employées dans les codes sont listées. Les Appendices E et F sont dédiées à deux équations d'état: la prémière est celle d'un gas de neutrons, protons et électrons; la deuxième décrit l'équations d'état de Lattimer et Swesty et les modifications qu'on a apportés pour corriger une erreur dans la définition de l'énergie de liaison des particules alpha et pour étendre l'équation d'état à des densités plus basses. Enfin, l'Appendice G détaille les processus des neutrinos implémentés dans les simulations. Le développement des codes numériques pour simuler l'effondrement gravitationnel de supernova effectué dans ce travail de thèse est apte pour tester les propriétés de la matière et peux constituer un outil pour des projets de recherche futurs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Fantina, Anthea Francesca. „Supernovae theory : study of electro-weak processes during gravitational collapse of massive stars“. Paris 11, 2010. http://www.theses.fr/2010PA112225.

Der volle Inhalt der Quelle
Annotation:
Dans le cadre de la théorie des Supernovae de type II, la plus part des simulations numériques échouent de reproduire l'explosion observée, à cause de phénomènes hydrodynamiques et des processus nucléaires pas encore bien connus. Le but de ce travail est d'étudier certains processus microphysiques et d'évaluer leur impact parmi des simulations hydrodynamiques. Parmi les processus électro-faibles intervenant pendant l'effondrement, le plus important est la capture électronique, crucial pour déterminer l'évolution de la fraction leptonique dans la phase de neutronization. Elle a un impact sur l'efficacité du rebond et l'énergie de l'onde du choc. De plus, l'équation d'état de la matière et les taux de capture électronique dans les noyaux sont modifiés par la masse effective des nucléons dans les noyaux, dûe aux corrélations à multi-corps, et à sa dépendance de la température. On présente un modèle nucléaire avec le but d'étudier la masse effective nucléaire. On a inclus dans une approche de la fonctionnelle de la densité une masse effective piquée en surface pour reproduire des effets au delà de Hartree-Fock. On présente aussi les modèles de supernova sur lesquels j'ai travaillé, dans une approximation à une zone et à une dimension en symétrie sphérique, newtonienne et en relativité générale. On montre que, en introduisant une masse effective dépendante de la température dans un code à une zone et newtonien en symétrie sphérique avec transport des neutrinos, la deleptonization est réduite : cela a un impact non-negligeable sur la formation de l'onde du choc. On présente aussi les résultats obtenus avec un code en relativité générale avec un traitement muIti-groupe des neutrinos
Ln the framework of type II Supernovae theory, most of numerical simulations of the supernova core collapse and shock wave propagation fail to reproduce the observed explosion, because of both hydrodynamical phenomena and to some microphysical processes involved in the picture and not yet completely understood. The aim of this work is to investigate some microphysical aspects and to analyze their effects through hydrodynamical simulations. Among electro-weak processes occuring in core-collapse supernova, the most important one is the electron capture, crucial to determine the evolution of lepton fraction during the neutronization phase. It affects the efficiency of the bounce and the strength of the shock wave. Moreover, both the equation of state of supernova matter and electron capture rates in nuclei are modified by the nuclear effective mass in nuclei, induced by many-body correlations, and its temperature dependence. I will present a nuclear model aimed at studying the nuclear effective mass. We have included in a energy density functional approach a surface-peaked nuclear effective mass to mimic some effects beyond Hartree-Fock. I will then present the supernova models I have worked on, in a one-zone approximation, and in spherically symmetric one-dimensional approximation, Newtonian and General Relativistic. We will show that, introducing a temperature dependent effective mass into a one-zone and a one dimensional Newtonian code with neutrino transport, the deleptonization is reduced and has a non-negligible effect on the shock wave energetics. We will also present results obtained with the General Relativistic code with a multi-group treatment of neutrinos
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Jauzac, Mathilde. „Cosmological constraints : from the cosmic infrared background measurement to the gravitational lensing in massive galaxy clusters“. Thesis, Aix-Marseille 1, 2011. http://www.theses.fr/2011AIX10096.

Der volle Inhalt der Quelle
Annotation:
La thématique principale de mon travail de thèse est l’é;volution et la formation structures en fonction du décalage vers le rouge (redshift par la suite).Mon travail de thèse se divise en deux parties distinctes, qui finalement se regroupent au cours de mes derniers travaux. Dans un premier temps, j’ai étudié l’évolution du Fond Diffus Infrarouge (Cosmic Infrared Background, CIB par la suite) en fonction du redshift à 70 et 160 µm en utilisant des données provenant du satellite Spitzer. J’ai effectué ce travail dans les champs GOODS & COSMOS en appliquant la méthode d’empilement (stacking, par la suite). Dans un second temps, j’ai étudié la distribution de masse dans des amas de galaxies situé à grand redshift en utilisant le lentillage gravitationnel faible. Pour ce faire, j’ai utilisé des données optiques provenant du satellite spatial Hubble (Hubble Space Telescope, HST par la suite). Ces données proviennent du relevé d’amas MACS (MAssive Cluster Survey). Les amas de galaxies étudiés ici font partis d’un sous-échantillon MACS, l’échantillon "grand-z" (high-z subsample). Comprendre l’état d’évolution des amas de galaxies à grand redshift permettrait de mettre des contraintes sur les modèles de formation et d’évolution des structures. La compréhension du cycle d’évolution des amas de galaxies est l’un des enjeux majeurs de la Cosmologie observationnelle actuelle
The principal thematic of my thesis work is the evolution and the formation of structures as a function of the redshift.My thesis analysis can be separated un two distinct parts, which can finally be merged in a third part with my last works.Firstly, I studied the evolution of the Cosmic Infrared Background (CIB) as a function of redshift at 70 and 160 µm using data from the Spitzer Space Telescope. This analysis was performed in the GOODS & COSMOS fields by applying a stacking method.Secondly, I studied the mass distribtuion in massive galaxy clusters at high redshifts by using the gravitational lensign effect.I used optical data coming from the Hubble Space Telescope. The sample of galaxy clusters I used comes from a subsample of the MAssive Cluster Survey (MACS, PI:E. Ebeling) named the "high-z" sample, and which comprises 12 clusters.Understanding the state of evolution of galaxy clusters at high redshift wil allow us to put constraints on formation and evolution models of structures. The understanding of the evolution cycle of galaxy clusters is mandatory in terms of Observational Cosmology
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Bonnet, Henri. „Les effets de distorsion gravitationnelle faible induits par les structures massives et leur application à l'analyse des amas de galaxies“. Toulouse 3, 1995. http://www.theses.fr/1995TOU30054.

Der volle Inhalt der Quelle
Annotation:
L'effet de lentille gravitationnelle engendre par une structure massive telle qu'un amas de galaxies entraine un accroissement d'ellipticite des images de galaxies d'arriere plan dans la direction orthoradiale, par rapport au centre de la lentille deflectrice. La distribution projetee de cette polarisation est une cartographie directe de la distribution de masse totale de la structure. Elle peut etre detectee statistiquement, afin de s'affranchir du bruit lie a l'ellipticite naturelle des sources. Des techniques d'observation et de traitement d'images sont specialement adaptees a cette etude pour prendre en compte le rapport signal sur bruit tres faible de chaque objet et la degradation atmospherique et instrumentale de l'image. L'instabilite du pointage du telescope peut provoquer une anisotropie de cette fonction de transfert. Ce defaut est estime puis corrige en evaluant la forme des images stellaires. Les cartes de polarisation obtenues par cette technique permettent une reconstruction non parametrique de la distribution de masse projetee de la lentille, a une constante d'integration pres. Alternativement, si la qualite des donnees n'est pas suffisante, la mesure de l'evolution radiale de l'intensite de polarisation est utilisee pour ajuster des modeles analytiques, sous certaines hypothese. La mise en uvre de cette nouvelle technique a permis la localisation de la structure responsable de l'image double d'un quasar, identifiee a posteriori par une analyse photometrique multi-bandes. Par ailleurs, la mesure du profil de polarisation induit par un amas riche a fourni une evaluation de son rapport masse sur luminosite sur une echelle de trois megaparsecs. La valeur obtenue (environ mille) est compatible avec un univers de densite critique
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Amaro-Seoane, Pau [Verfasser]. „Dense stellar systems and massive black holes : sources of gravitational radiation and tidal disruptions / Pau Amaro-Seoane“. Potsdam : Universität Potsdam, 2016. http://d-nb.info/1218400838/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Bernard, Laura. „Dynamique des systèmes binaires d'objets compacts & théories de gravité massive“. Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066121.

Der volle Inhalt der Quelle
Annotation:
La première partie de cette thèse traite des théories de gravité massive. L'étude de ces théories a connu un regain d'intérêt depuis la découverte de l'accélération de l'expansion de l'univers, car elles pourraient expliquer cette dernière sans avoir à recourir à une constante cosmologique. La découverte, en 2010 d'une théorie cohérente de gravité massive, dite dRGT, a ouvert un vaste et prometteur champ d'investigation. Dans cette thèse nous déterminons, dans une formulation métrique et covariante, la linéarisation autour d'espace-temps arbitraires de ces théories, et de leur extension bimétrique. Ce travail nous permet ensuite de compter par une méthode lagrangienne le nombre de degrés de liberté qui se propagent. La seconde partie de cette thèse s'inscrit dans le cadre des ondes gravitationnelles en relativité générale et porte plus précisément sur la dynamique de systèmes binaires d'objets compacts. Ce travail est important dans la perspective de leur détection par les détecteurs interférométriques d'ondes gravitationnelles terrestres et spatial. Nous étudions le problème de la dynamique de systèmes binaires d¿objets compacts en relativité générale, à l¿aide de la méthode d'approximation dites des développements post-newtoniens (PN). Nous dérivons les équations du mouvement à l'ordre $4$PN en coordonnées harmoniques. Nous utilisons une méthode basée sur une action de Fokker adaptée au formalisme post-newtonien, en dérivant notamment les effets de sillage d'onde qui apparaissent à $4$PN
The first part of this thesis deals with massive gravity theories. There has been a renewal of interest in these theories since the discovery of the acceleration of the expansion of the universe, because they could explain it without having to resort to a cosmological constant. The discovery in 2010 of a coherent theory of massive gravity, named dRGT, has opened a vast and promising field of investigation. In this thesis we determine, in a metric and covariant formulation, the linearization around arbitrary backgrounds of these theories and their bimetric extension. This result then allows us to count with a Lagrangian method the number of degrees of freedom that are propagating. The second part of this thesis concerns gravitational waves in general relativity and especially the dynamics of coalescing compact binary systems. This work is important in view of their detection by interferometric detectors, both terrestrial and spacial. We study the dynamics of compact binary systems in general relativity, using the approximation method based on post-Newtonian developments (PN). We derive the equations of motion to $4$ PN order in harmonic coordinates. We use a method based on a Fokker action adapted to the post-Newtonian formalism, in particular deriving the tail effects appearing at $4$PN
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Poulin, Vivian Verfasser], Julien [Akademischer Betreuer] [Lesgourgues und Pasquale D. [Akademischer Betreuer] Serpico. „Gravitative und elektromagnetische Signaturen von massiven Relikten in Kosmologie / Vivian Poulin ; Julien Lesgourgues, Pasquale D. Serpico“. Aachen : Universitätsbibliothek der RWTH Aachen, 2017. http://d-nb.info/1180731131/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Poulin, Vivian [Verfasser], Julien [Akademischer Betreuer] Lesgourgues und Pasquale D. [Akademischer Betreuer] Serpico. „Gravitative und elektromagnetische Signaturen von massiven Relikten in Kosmologie / Vivian Poulin ; Julien Lesgourgues, Pasquale D. Serpico“. Aachen : Universitätsbibliothek der RWTH Aachen, 2017. http://d-nb.info/1180731131/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Rodrigues, Douglas Benndorf. „Análise Hamiltoniana de um Modelo de Partículas de Spin-2 Massivas não-Fierz-Pauli /“. Guaratinguetá, 2016. http://hdl.handle.net/11449/148548.

Der volle Inhalt der Quelle
Annotation:
Orientador: Denis Dalmazi
Coorientador: Alessandro L. R. dos Santos
Banca: Elias Leite Mendonça
Banca: Fabrício Augusto Barone Rangel
Resumo: Neste trabalho abordamos de forma introdutória o tratamento de sistemas singulares, em especial as teorias de Maxwell, Proca e Fierz-Pauli, e obtemos resultados originais para a família de modelos de spin-2 massivos do tipo não-Fierz-Pauli. Tendo como ferramenta principal o método de Dirac para sistemas vinculados, escrevemos a densidade de hamiltoniana primária do modelo LnF P, obtemos seus vínculos primários, secundários, terciários e quartenários, assim como os multiplicadores de Lagrange. Calculamos também o número de graus de liberdade independentes e mostramos a positividade da hamiltoniana reduzida
Abstract: In this work, we approach in an introductory way the treatment of singular systems, especially the theories of Maxwell, Proca and Fierz-Pauli, and obtain original results for the non-Fierz-Pauli family of massive spin-2 models. Having as main tool the Dirac method for constrained systems, we write the primary Hamiltonian density of the LnF P model, obtain their primary, secondary, tertiary and quaternary constraints, as well as Lagrange multipliers. We calculate the number of independent degrees of freedom of the model and demonstrate the positivity of the reduced Hamiltonian
Mestre
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Walth, Gregory Lee. „Characterizing the Star Forming Properties of Herschel-Detected Gravitationally Lensed Galaxies“. Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/594651.

Der volle Inhalt der Quelle
Annotation:
Dusty star forming galaxies (DSFGs), characterized by their far-infrared (far-IR) emission, undergo the largest starbursts in the Universe, contributing to the majority of the cosmic star formation rate density at z = 1−4. The Herschel Space Observatory for the first time was able observe the full far-IR dust emission for a large population of high-redshift DSFGs, thereby accurately measuring their star formation rates. With gravitational lensing, we are able to surpass the Herschel confusion limit and probe intrinsically less luminous and therefore more normal star-forming galaxies. With this goal in mind, we have conducted a large Herschel survey, the Herschel Lensing Survey, of the cores of almost 600 massive galaxy clusters, where the effects of gravitational lensing are the strongest. In this thesis, I present follow-up studies of gravitationally lensed Herschel-detected DSFGs by utilizing multi-wavelength data from optical to radio. Specifically, I characterize the star forming properties of gravitationally lensed DSFGs by using these three subsamples: (1) A gravitationally lensed DSFG galaxy at z = 0.6 in one of the most massive galaxy clusters, Abell S1063 (at z = 0.3), (2) One of the brightest sources in HLS, which is a system of two strongly gravitationally lensed galaxies, one at z = 2.0 (optically faint gravitational arc) and the other at z = 4.7 (triply-imaged galaxy), (3) A sample of the brightest sources in HLS at z = 1−4, in which we detect rest-frame optical nebular emission lines (e.g. Hα, Hβ, [OIII]λλ4959,5007) by utilizing near-IR spectroscopy. The main results from these studies are as follows: (1) In the cluster-lensed DSFG at z = 0.6, discovered in the core of Abell S1063, we identify a luminous (SFR = 10 M⊙/yr) giant (D~1 kpc) HII region similar to those typically found at higher redshift (z~2). We show that the HII region is embedded in a rotating disk and likely formed in isolation, rather than through galaxy interaction, which is observed in local galaxies. We can use this source as a nearby laboratory for star forming regions at z ~ 2, in which more detailed follow-up of this source can help us to understand their origin/properties. (2) We discovered that one of the brightest sources in HLS is a blend of two cluster-lensed DSFGs, one at z = 2.0 (an optically faint arc) and the other at z = 4.7 (triply-imaged galaxy), implying that a sample of bright Herschel sources may have such multiplicity. In the z = 2.0 arc, the sub-arcsecond clumps detected in the SMA image surprisingly do not correspond to the clumps in the JVLA CO(1-0) image. When investigating the CO(1-0) velocity structure, there is a substantial amount of molecular gas (likely a molecular wind/outflow) we find that we find is not associated with star formation. This suggests that the CO morphology in DSFGs could be strongly influenced by molecular outflows resulting in the over-prediction of the amount of the molecular gas available for star formation. In the z = 2.0 arc, we also constrain αCO~4. While this value is normal for galaxies like the Milky Way, it is quite unusual for ULIRGs. This hints that the physical conditions may be much different in the arc from other ULIRGs, which usually have αCO ≈ 0.8.(3) We successfully detect rest-frame optical emission lines in 8 gravitationally lensed DSFGs at z = 1−4 using ground-based near-IR spectroscopy with Keck, LBT and Magellan. The luminosities of these lines are substantially less than what the far-IR derived star formation rates predict, suggesting that these DSFGs have large dust attenuations. The difference in the star formation rates is a factor of 30 x (AV= 4), which is larger than previously reported for DSFGs at z > 1. One galaxy (z = 1.5) in the sample showed the largest suppression with a factor of 550x (AV = 7), which is similar to local ULIRGs. Future prospects: Herschel provided a glimpse into the star formation of DSFGs, but only the brightest at z > 2 could be studied in detail without gravitational lensing. ALMA will revolutionize the study of DSFGs with its high spatial resolution submm/mm imaging of their dust continuum and molecular gas, and it will begin to unravel their physical properties. In order to detect nebular emission lines in fainter higher redshift sources, 20-30 meter class telescopes, with next generation near-IR spectrographs, will be necessary. JWST will play a significant role as it will target rest-frame optical nebular emission lines in DSFGs unobtainable from the ground as well as weaker Hydrogen series lines (such as Paschen and Brackett series) to better understand their instantaneous star formation and dust attenuation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Bebronne, Michael. „Theoretical and phenomenological aspects of theories with massive gravitons“. Doctoral thesis, Universite Libre de Bruxelles, 2009. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210253.

Der volle Inhalt der Quelle
Annotation:
Depuis sa formulation au début du 20ème siècle, la théorie de la Relativité Générale a été vérifiée avec une précision sans cesse croissante. Cette théorie prédit, entre autre, l'existence d'ondes gravitationnelles qui restent à ce jour inobservées, et ce malgré de nombreuses tentatives de détections. Ces ondes sont caractérisées par leur absence de masse. Une des questions qui se pose alors est de savoir si cette absence de masse est une condition nécessaire pour que théorie et observations concordent. Pour répondre à cette question, il est indispensable d'étudier les différents aspects des théories décrivant des ondes gravitationnelles massives. Au-delà de cet intérêt purement théorique, l'étude de ces théories est, entre autre, motivée par de récentes observations cosmologiques. Celles-ci indiquent que l'accord entre la Relativité Générale et les observations n'est possible que si on suppose l'existence de matière et d'énergie noires.

Cette thèse est dédiée à une classe de théories décrivant des ondes gravitationnelles massives. Dans un premier temps, nous résumons les différents problèmes qui surgissent lorsqu'on tente de donner une masse aux ondes gravitationnelles. Ensuite, nous introduisons une classe de modèles et étudions certaines de leurs caractéristiques.

Le premier aspect étudié concerne l'existence d'une interaction de type instantanée. De telles interactions sont possibles étant donné que l'invariance de Lorentz est spontanément brisée dans les modèles considérés. Celles-ci sont dès lors discutées et un exemple concret est fourni.

La présence d'une interaction instantanée dans ces modèles a une conséquence directe sur les solutions "trous noirs" des équations du champ. En effet, on s'attend à ce que l'interaction instantanée puisse propager de l'information à l'extérieur d'un trou noir, ce qui entraînerait une modification de ces solutions par rapport à celles de la Relativité Générale. Cette supposition est confirmée par les solutions "trous noirs" obtenues dans cette thèse. Celles-ci peuvent soit imiter une certaine quantité de matière noire, soit conduire à un champ gravitationnel répulsif.

Finalement, les mécanismes de formation des grandes structures de l'Univers (galaxies, amas de galaxies, ) sont étudiés pour les théories considérées. Cette dernière discussion démontre que ces modèles reproduisent le comportement prévu par la Relativité Générale et sont, par conséquent, en accord avec les observations.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Berry, Christopher P. L. „Exploring gravity“. Thesis, University of Cambridge, 2014. https://www.repository.cam.ac.uk/handle/1810/245139.

Der volle Inhalt der Quelle
Annotation:
Gravitation is the dominant influence in most astrophysical interactions. Weak-field interactions have been extensively studied, but the strong-field regime remains largely unexplored. Gravitational waves (GWs) are an excellent means of accessing strong-field regions. We investigate what we can learn about both astrophysics and gravitation from strong-field tests and, in particular, GWs; we focus upon extreme-mass-ratio (EMR) systems where a small body orbits a much more massive one. EMR bursts, a particular class of GW signals, could be used to determine the properties of massive black holes (MBHs). They could be detectable with a space-borne interferometer from many nearby galaxies, as well as the Galactic centre. Bursts could provide insightful constraints on the MBHs' parameters. These could elucidate the formation history of the MBHs and, by association, their host galaxies. The Galactic centre is the most promising source. Its event rate is determined by the stellar distribution surrounding the MBH; the rate is not high, but we still expect to gain useful astronomical information from bursts. Strong-field tests may reveal deviations from general relativity (GR). We calculate modifications that could be observed assuming metric f(R)-gravity as an effective alternative theory. Gravitational radiation is modified, as are planetary precession rates. Both give a means of testing GR. However, existing laboratory measurements already place tighter constraints on f(R)-gravity, unless there exists a screening effect, such as the chameleon mechanism, which suppresses modifications on small scales. To make precision measurements of astrophysical systems or place exacting bounds on deviations from GR, we must have accurate GW templates. Transient resonances are currently not included in the prescription for generating EMR inspiral waveforms. Their effects can be estimated from asymptotic expansions of the evolving orbital parameters. The quantitative impact on parameter estimation has yet to be calculated, but it appears that it shall be necessary to incorporate resonances when creating inspiral waveforms.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Mahler, Guillaume. „Modélisation précise d’amas de galaxies massifs observés par Hubble et MUSE“. Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1198/document.

Der volle Inhalt der Quelle
Annotation:
Les amas de galaxies sont des structures massives composées à plus de 80% de matière noire. Leur coeur peut atteindre une densité de masse critique qui en déformant l'espace-temps fait converger les rayons lumineux vers l'observateur. Grâce à des relevés photométriques profonds de l'amas Abell 2744, de nombreux systèmes multiples ont été découverts. Identifier ces systèmes reste un défi, j'ai donc développé une méthode robuste basée sur les propriétés photométriques conservées par l'effet de lentille gravitationnelle qui permet de les détecter automatiquement. Le meilleur moyen de prouver que des images proviennent de la même galaxie reste la mesure de leur distance(redshifts) grâce à leur spectre. En analysant les données collectées par le spectrographe à intégrale de champ MUSE j'ai mesuré un grand nombre de sources (514) dont 83 d'entre elles sont des images multiples. Bénéficiant de cette large couverture spectrale, j'ai créé un modèle paramétrique de masse parmi les plus contraints à ce jour. La sensibilité atteinte par le modèle permet de sonder l'influence de structures périphériques (jusqu'à une distance de 700kpc), révélant ainsi des erreurs systématiques sur la mesure de la masse due à la paramétrisation du modèle (6%). Comparé aux précédentes études, on voit une diminution de 10% de la masse dans un rayon 100 kpc montrant ainsi en partie le gain offert par la spectroscopie. Ce gain, bien que négligeable sur la mesure de l'amplification, s'est avéré pouvoir contraindre la balance en masse entre les différentes composantes de notre modèle, dépassant par endroits 2 fois l'incertitude statistique
Clusters of galaxies are large and massive structures containing more than 80% of dark matter. In the cluster core, the mass density can reach a critical threshold making the curvature of space-time large enough to bend light path and then allow multiple convergence of images from the same sources to appear on the observer field of view. Thanks to deep photometric coverage of Abell 2744, a lot of multiply-imaged systems were discovered. Nevertheless, finding them remain a challenge and based on the preserved photometric properties by lensing, I developed a robust method to automatically find them. However, measuring the redshifts for each multiple images remains the best way to surely associate them. The deep coverage of the integral field spectrograph MUSE allowed me to identify a large number of sources ( 514 ) among them 83 were multiple images. Thanks to this large spectroscopic coverage, I built one of the most constrained parametric mass model for lensing cluster to date. The sensitivity raised by this model allow me to probe the influence of outskirts substructures ( at 700 kpc distance ), revealing systematic sources of uncertainties related to the mass model parametrisation ( 6% ). Compared to previous studies, I notice a 10% lower mass in the center ( within 100kpc ) showing one of the benefit of large spectroscopic constraints. This benefit, is smaller on the amplification estimation but shows a significant discrepancy between different mass counterparts in the models, up to 2 times the statistical uncertainties
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Kneib, Jean-Paul. „Arcs multiples et arclets comme diagnostic de la distribution de matiere dans les amas de galaxies“. Toulouse 3, 1993. http://www.theses.fr/1993TOU30240.

Der volle Inhalt der Quelle
Annotation:
Les premieres observations extragalactiques de mirages gravitationnels (walsh et al. 1979, soucail et al. 1987) ont fourni une demonstration spectaculaire des predictions de la relativite generale et ont ouvert un nouveau chapitre des methodes de diagnostic de l'astrophysique: l'optique gravitationnelle. Apres une introduction generale, je rappelle, a partir de la theorie de la relativite generale, comment une concentration de matiere peut deformer localement la metrique de l'espace-temps et les geodesiques suivies par les photons et conduire au phenomene de mirages gravitationnels. Je presente un formalisme simple et performant pour caracteriser les deformations, petites ou grandes, de galaxies en arcs gravitationnels. J'etudie ensuite l'influence de la forme des distributions de matiere possibles pour un amas de galaxies sur la forme et le nombre des images gravitationnelles. Le formalisme des deformations est enfin utilise pour definir des methodes exactes (dans le cas des arcs multiples) et statistiques (dans le cas des arclets) permettant de retrouver la distribution de matiere dans les amas de galaxies. J'applique enfin ces methodes aux observations des amas ms2137, a370 et a2218. Ceci me permet de contraindre la distribution de masse des amas de galaxies sur des echelles caracteristiques de 50 kpc et d'estimer la taille et la distribution en redshift des sources produisant les arcs et les arclets. Je propose finalement differentes utilisations futures des arcs et arclets pour la mise en evidence de grandes structures ou bien comme moyen de contraindre les parametres cosmologiques et #0
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Ritter, Patxi. „Ondes gravitationnelles et calcul de la force propre pour un astre compact en mouvement autour d'un trou noir super-massif“. Thesis, Orléans, 2013. http://www.theses.fr/2013ORLE2038/document.

Der volle Inhalt der Quelle
Annotation:
Cette thèse s'inscrit dans le cadre de la modélisation des ondes gravitationnelles et du mouvement relativiste associés aux systèmes binaires à grand rapport de masses (Extreme Mass Ratio Inspiral - EMRI). Ces systèmes sont formés d'un trou noir super massif autour duquel gravite un objet compact de masse stellaire. Dans le formalisme de la théorie perturbative des trous noirs, on développe une méthode numérique qui calcule les formes d'ondes produites par une particule ponctuelle en orbite autour d'un trou noir de Schwarzschild. Il s'agit de résoudre l'équation d’onde de Regge-Wheeler-Zerilli dans le domaine temporel dont la solution, invariante de jauge, peut être reliée aux modes de polarisation, à l'énergie et au moment cinétique emporté par les ondes gravitationnelles. En réaction à l'énergie et au moment perdu, la trajectoire de la particule est affectée au cours du temps. Dans le cadre du formalisme de MiSATaQuWa, on calcule la force propre agissant sur une particule, initialement au repos, est en chute libre sur un trou noir de Schwarzschild. Nous montrons comment cette quantité est définie dans la jauge de Regge-Wheeler par le biais de la régularisation mode-sum. L'effet de la force propre sur le mouvement de la particule est ensuite pris en compte de façon itérative et auto-consistante grâce à un algorithme utilisant une méthode d'orbites osculatrices que nous avons développé. Nous quantifions cet effet en calculant soit la déviation orbitale par rapport au mouvement géodésique, soit les formes d'ondes perturbées et l'énergie rayonnée associée
This thesis focuses on modelling the gravitational waves and the relativistic motion associated to Extreme Mass Ratio Inspiral (EMRI) systems. These systems consist of a stellar mass compact object gravitationally captured by a super-massive black hole. In black hole perturbation theory, we further develop a numerical method which computes waveforms generated by a point mass particle orbiting a Schwarzschild black hole. The Regge-Wheeler-Zerilli wave equation is solved in time domain. The gauge invariant solution is related to the polarisation modes, the energy and the angular momentum carried by the gravitational waves. In reaction to the energy and the moment lost, the trajectory is modified all along. In the MiSaTaQuWa formalism, we compute the self-force acting upon a point particle which is initially at rest, and then falling into a Schwarzschild black hole. We show how this quantity is defined in the Regge-Wheeler gauge by using the mode-sum regularisation technique. We take into account the self-force effect on the motion of the particle by using an iterative and osculating orbit method conceived herein. We quantify the orbital deviation with respect to the geodesic motion, but also the perturbed wave forms and the associated radiated energy
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Jomard, Hervé. „Analyse multi-échelles des déformations gravitaires du Massif de l'Argentera Mercantour“. Phd thesis, Université de Nice Sophia-Antipolis, 2006. http://tel.archives-ouvertes.fr/tel-00295597.

Der volle Inhalt der Quelle
Annotation:
Les mouvements de terrain sont un des facteurs principaux de l'érosion des chaînes de montagnes et représentent un enjeu déterminant dans l'aménagement des vallées. Les phénomènes gravitaires se manifestent sous des formes très variées rarement reconnues et rarement analysées dans leur globalité au sein d'un même massif. Ainsi les liens géométriques et dynamiques les caractérisant ne sont-ils jamais abordés. Ils pourraient cependant représenter un apport substentiel dans la compréhension des processus de déstabilisation, la reconnaisssance et la définition des aléas.
Nous avons tout d'abord cartographié les mouvements gravitaires rocheux dans la partie occidentale du massif de l'Argentera Mercantour et étudié leur relation et leur répartition en fonction des variables géologiques et morphologiques régionales. Puis nous nous sommes focalisés sur l'étude de deux cas représentatifs actuels d'échelles différentes sur lesquels nous avons testé et calibré la méthode de tomographie électrique (2D-3D-4D): le glissement de la Clapière et un glissement secondaire emboîté a son pied.
Notre étude permet d'établir un lien et un contrôle par la structure tectonique des mouvements d'échelles très différentes : Deep Seated Gravitational Slope Deformations (DSGSD), Deep Seated Landslides (DSL) et glissements superficiels. Ce contrôle s'exprime de différentes façons mais il apparaît de manière générale que l'échelle spatiale des déstabilisations gravitaires qui en résulte est directement proportionnelle à l'échelle temporelle des processus géologiques et morphodynamiques.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Ryan, Fintan Danh. „Searching for Black Holes and Other Massive, Compact Bodies Using the Gravitational Waves from Binary Inspirals“. Thesis, 1997. https://thesis.library.caltech.edu/10416/2/Ryan_fd_1997.pdf.

Der volle Inhalt der Quelle
Annotation:
We consider several issues involved with searching for and studying different types of compact bodies using the gravitational waves from binary inspirals. In Chapter 2, we use a radiation­ reaction force formalism to compute (to leading post-Newtonian order) the inspiral evolution of a circular, nonequatorial orbit around a spinning black hole. We find that an initially circular orbit remains circular under radiation reaction and is driven towards anti-alignment with the black hole's spin direction. In Chapter 3, we apply this same formalism to orbits which are elliptical as well as nonequatorial. In addition, we prove that circular orbits remain circular exactly. In Chapter 4, we show that all the multipole moments of a massive, compact body (whose gravita­tional field is stationary, axially symmetric, and reflection symmetric across the equatorial plane) can be determined from the gravitational waves produced by a much less massive, compact object inspiraling in a contracting circle in the equatorial plane. We show that the moments are encoded in the waves' evolution in (at least) four independent functions of the gravitational-wave frequency: the gravitational-wave energy, the precession frequency of the orbit when slightly eccentric, the precession frequency of the orbit when slightly nonequatorial, and the gravitational-wave phase evolution. In Chapter 5, we compute the structure and the multipole moments of a spinning boson star with large self-interaction. We find that only three moments are needed to specify all the star's properties, and that the pattern of moments is very different from that for black holes. In Chapter 6, we estimate how accurately a gravitational-wave detector can estimate the multipole moments of the central body from the gravitational waves produced by an inspiraling compact object. We find that, typically, a space-based detector such as LISA (as opposed to an Earth-based detector such as LIGO) is necessary to get accurate enough measurements of the multipole moments so as to search for massive, compact, non-black-hole objects. In Chapter 7, as a model for computing the full details of the gravitational waves from an orbital inspiral, we compute the scalar waves produced by a scalar charge in a circular, equatorial orbit around a body with arbitrary multipole moments.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Sinha, Siddhartha. „Gravitational Waves From Inspiralling Compact Binaries : 3PN Polarisations, Angular Momentum Flux And Applications To Astrophysics And Cosmology“. Thesis, 2008. http://hdl.handle.net/2005/853.

Der volle Inhalt der Quelle
Annotation:
Binary systems comprising of compact objects like neutron stars (NS) and/or black holes (BH) lose their energy and angular momentum via gravitational waves (GW). Radiation reaction due to the emission of GW results in a gradual shrinking of the binary orbit and an accompanying gradual increase in the orbital frequency. The preliminary phase of the binary evolution when the radiation-reaction time-scale is much larger than the orbital time-scale is called the inspiral phase. GW emitted during the final stages of the inspiral phase constitute one of the most important sources for the ground-based laser interferometric GW detectors like LIGO, VIRGO and the proposed space-based detector LISA. For the ground-based detectors, NS and/or stellar mass BH binaries are primary sources, while for LISA super-massive BH (SMBH) binaries are potential targets. Inspiralling compact binaries (ICB) are among the prime targets for interferometric detectors because using approximation schemes in general relativity (GR) like the post-Minkowskian (PM) and the post-Newtonian (PN) approximations one can compute the GW emitted by them with sufficient accuracy both for their detection and parameter estimation leading to GW astronomy. The extreme weakness of gravitational interactions implies that if a GW signal from an ICB is incident on a detector, it will be buried in the noisy detector output. Therefore, sophisticated data analysis techniques are required for detecting the signal in presence of the dominant noise and also estimating the parameters of the signal. From the pre-calculated theoretical waveforms called templates, one already knows the structure of the waveform from an ICB. The technique for detecting signals which are of known form in a noisy detector is matched filtering. This technique consists of cross-correlating the output of a noisy detector assumed to contain the signal of known form with a set of templates. It then finds an ‘optimal’ template that would produce, on average, the highest signal-to-noise ratio (SNR). The efficient performance of matched filtering as a data-analysis strategy for GW signals from ICB presupposes very accurate theoretical templates. Slight mismatches between the signal and the template will result in a loss of signal to noise ratio. Computing very accurate theoretical templates and including effects such as eccentricity are challenging tasks for the theoreticians. This thesis addresses some of the issues related to the waveform modelling of the ICB and their implications for GW data analysis. It is known theoretically that compact binaries reduce their eccentricity through the emission of GW. When GW signals from prototype ICB reach the GW detector bandwidth, their orbits are almost circular. Hence one usually models the binary orbit to be circular for computation of the search templates. The waveform from an ICB in a circular orbit is, at any given PN order of approximation, a linear combination of a finite number of harmonics of the orbital frequency. At the lowest order of approximation, called the Newtonian order, the waveform comprises a single harmonic at twice the orbital frequency. Inclusion of higher order PN corrections lead to the appearance of higher harmonics of the orbital frequency. Since the amplitudes of the higher harmonics contain higher powers of the PN expansion parameter, relative to the Newtonian order, they are referred to as amplitude corrections. The phase of each harmonic, determined by the orbital phase, is known upto 3.5PN order (nPN is the order of approximation equivalent to terms ~(v/c)2n beyond the Newtonian order, where v denotes the binary’s orbital velocity and c is the speed of light). Matched filtering is more sensitive to the phase of the signal rather than its amplitude, since the correlation builds up as long as the signal and the template remain in phase. Motivated by this fact, search templates so far have been a waveform model involving only the dominant harmonic (at twice the orbital frequency), although the phase evolution itself is included upto the maximum available PN order. Such waveforms, in which all amplitude corrections are neglected, but the phase is treated to the maximum available order, are called restricted waveforms (RWF) and these are generally used in the data-analysis of ground-based detectors and also simulated searches for the planned LISA. However, recent studies, in the case of ground-based interferometers, showed that going beyond the RWF approximation could improve the efficiency of detection as well as parameter estimation of the inspiral signal. After a brief overview of the properties of GW and their detection strategies in chapter 1, in chapters 2 and 3, we investigate the implications of going beyond the RWF, in the context of the planned space-based Laser Interferometric Space Antenna (LISA). The sensitivity of ground-based detectors is limited by seismic noise below 20Hz. On the other hand, the space-based LISA will be designed to be sensitive to GWs of frequency (10−4 _1)Hz. The most important source in this frequency band are supermassive BH (SMBH) binaries. There is strong observational evidence for the existence of SMBH with masses in the range of in most galactic nuclei. Mergers of such galaxies result in SMBH binaries whose evolution is governed by the emission of GW. Observation of the GW from SMBH binaries at high redshifts is one of the major science goals of LISA. These observations will allow us to probe the evolution of SMBHs and structure formation and provide an unique opportunity to test General Relativity (and its alternatives) in the strong field regime of the theory. Observing SMBH coalescences with high (100-1000) SNR is crucial for performing all the aforementioned tests. The LISA bandwidth (10−4_ 1)Hz determines the range of masses accessible to LISA because the inspiral signal would end when the system’s orbital frequency reaches the mass-dependent last stable orbit (LSO). In the test-mass approximation, the angular velocity ι at LSO is given by where M is the total mass of the binary. Search templates using the RWF, which contains only the dominant harmonic at twice the orbital frequency, cannot extract power in the signal beyond This further implies that the frequency range [0.1, 100] mHz corresponds to the range for the total mass of BH binaries that would be accessible to LISA. In chapter 2, we show that inclusion of higher harmonics will enhance the mass-range of LISA (for the same frequency range) and allow for the detection of SMBH binaries with total masses higher than The template employed in chapter 2 includes amplitude corrections upto 2.5PN order, while keeping the phase upto 3.5PN order. We call this template the full waveform (FWF). The FWF defined above contains higher harmonics of the orbital frequency, the highest of them being 7 times the orbital frequency. For a SMBH binary with total mass the dominant harmonic at LSO is less than the lower cut-off of the LISA bandwidth. Therefore, if one uses the RWF as a search template, this system is ‘invisible’ to LISA. However, the seventh harmonic can still enter the LISA bandwidth and produce a significant SNR and thus allow its detection. With the FWF, LISA can observe sources which are favoured by astronomical observations, but not observable with the RWF. More specifically, with the inclusion of all known harmonics LISA will be able to observe SMBH coalescences with total mass (and mass-ratio 0.1) for a low frequency cut-off of 10−4Hz (10−5Hz) with an SNR up to ~ 60 (~30) at a distance of 3 Gpc. The orbital motion of LISA around the Sun induces frequency, phase and amplitude modulations in the observed GW signal. These modulations carry information about both the source’s location and orientation. Determination of the angular coordinates of the source also allows determination of the luminosity distance of SMBH binaries. Therefore, SMBH binaries are often referred to as GW “standard sirens” (analogous to the electromagnetic “standard candles”). LISA would also be able to measure the “redshifted” masses of the component black holes with good accuracy for sources up to redshifts of a few. However, GW observations alone cannot provide any information about the redshift of the source. If the host galaxy or galaxy cluster is known one can disentangle the redshift from the masses by optical measurement of the redshift. This would not only allow one to extract the “physical” masses, but also provide an exciting possibility to study the luminosity distance-redshift relation providing a totally independent confirmation of the cosmological parameters. Further, this combined observation can be used to map the distribution of black hole masses as a function of redshift. Another outstanding issue in present day cosmology in which LISA can play a role is the dark energy and its physical origin. Probing the equation-of-state-ratio (w(z)) provides an important clue to the question of whether dark energy is truly a cosmological constant (i.e., w = -1). Assuming the Universe to be spatially flat, a combination of WMAP and Supernova Legacy Survey (SNLS) data yields significant constraints on Without including the spatial flatness as a prior, WMAP, large-scale structure and supernova data place a stringent constraint on the dark energy equation of state, For this to be possible, LISA should (a) measure the luminosity distance to the source with a good accuracy and (b) localize the coalescence event on the sky with good angular resolution so that the host galaxy/galaxy cluster can be uniquely identified. Based on analysis with the RWF, it is found that LISA’s angular resolution is not good enough to identify the source galaxy or galaxy cluster, and that other forms of identification would be needed. Secondly, weak lensing effects would corrupt the distance estimation to the same level as LISA’s systematic error. In chapter 3, we study the problem of parameter estimation in the context of LISA, but using the FWF. We investigate systematically the variation in parameter estimation with PN orders by critically examining the role of higher harmonics in the fast GW phasing and their interplay with the slow modulations induced due to LISA’s motion. More importantly, we explore the improvement in the estimation of the luminosity distance and the angular parameters due to the inclusion of higher harmonics in the waveform. We translate the error in the angular resolution to obtain the number of galaxies (or galaxy clusters) within the error box on the sky. We find that independent of the angular position of the source on the sky, higher harmonics improve LISA’s performance on both counts raised in earlier works based on the RWF. We show that the angular resolution enhances typically by a factor of ~2-500 (greater at higher masses) and the error on the estimation of the luminosity distance goes down by a factor of ~ 2-100 (again, larger at higher masses). For many possible sky positions and orientations of the source, the inaccuracy in our measurement of the dark energy would be at the level of a few percent, so that it would only be limited by weak lensing. We conclude that LISA could provide interesting constraints on cosmological parameters, especially the dark energy equation-of-state, and yet circumvent all the lower rungs of the cosmic distance ladder. Having emphasized the need to consider the FWF as a more powerful template, in chapter 4 we calculate a higher order term in the amplitude corrections of the waveform. In chapters 2 & 3, the FWF incorporated amplitude corrections upto 2.5PN order. In chapter 4 the waveform is calculated upto 3PN order. Recent progress in Numerical Relativity (NR) has resulted in computation of the late inspiral and subsequent merger and ringdown phases of the binary evolution (where PN theory does not hold good) by a full-fledged numerical integration of the Einstein field equations. A new field has emerged recently consisting of high-accuracy comparisons between the PN predictions and the numerically-generated waveforms. Such comparisons and matching to the PN results have proved currently to be very successful. They clearly show the need to include high PN corrections not only for the evolution of the binary’s orbital phase but also for the modulation of the gravitational amplitude. This leads to one more motivation for the work in this chapter: providing the associated spin-weighted spherical harmonic decomposition to facilitate comparison and match of the high PN prediction for the inspiral waveform to the numerically-generated waveforms for the merger and ringdown. For the computation of waveforms from the inspiralling compact binaries one needs to solve the two-body problem in general relativity. The nonlinear structure of general relativity prevents one from obtaining a general solution to this problem. The two-body problem is tackled using the multipolar post-Minkowskian (MPM) wave generation formalism. The MPM formalism describes the radiation field of any isolated post-Newtonian source. The radiation field is first of all parametrized by means of two sets of radiative multipole moments. These moments are then related (by means of an algorithm for solving the non-linearities of the field equations) to the so-called canonical moments which constitute some useful intermediaries for describing the external field of the source. The canonical moments are then expressed in terms of the operational source moments obtained by matching to a PN source and are given by explicit integrals extending over the matter source and gravitational field. The extension of the waveform by half a PN order requires as inputs the relations between the radiative, canonical and source multipole moments for general sources at 3PN order. We also require the 3PN extension of the source multipole moments in the case of compact binaries. The waveform in the far-zone consists of two types of terms, instantaneous and hereditary. The instantaneous terms are determined by the dynamical state of the binary at the retarded time. The hereditary terms, on the other hand, depend on the entire past history of the source. These terms originate from the nonlinear interactions between the various multipole moments and also from backscattering off the curved spacetime generated by the waves themselves. In this chapter, we compute the contributions of all the instantaneous and hereditary terms (which include tails, tails-of-tails and memory integrals) up to 3PN order. The end results of this chapter are given in terms of both the 3PN plus and cross polarizations and the separate spin-weighted spherical harmonic modes. Though most of the sources will be in circular orbits by the time the GWs emitted by the system enter the sensitivity band of the laser interferometers, astrophysical scenarios such as Kozai mechanism could produce binaries which have nonzero eccentricity. Studies have shown that filtering the signal from an eccentric binary with circular orbit templates could significantly degrade the SNR. For constructing a phasing formula for eccentric binaries one has to compute the energy and angular momentum fluxes carried away by the GWs and then compute how the orbital elements evolve with time under gravitational radiation reaction. The far-zone energy and angular momentum fluxes, like the waveform, contain both instantaneous and hereditary contributions. The complete 3PN energy flux and instantaneous terms in the 3PN angular momentum flux are already known. In chapter 5, the hereditary terms in the 3PN angular momentum flux from an ICB moving in quasi-elliptical orbits are computed. A semi-analytic method in the frequency domain is used to compute the hereditary contributions. At 3PN order, the quasi-Keplerian representation of elliptical orbits at 1PN order is required. To calculate the tail contributions we exploit the doubly periodic nature of the motion to average the 3PN fluxes over the binary’s orbit. The hereditary part of the angular momentum flux provided here has to be supplemented with the instantaneous part to obtain the final input needed for the construction of templates for binaries moving in elliptical orbits, a class of sources for both the space based detectors and the ground based ones. Using the hereditary contributions in the 3PN energy flux, we also compute the 3PN accurate hereditary contributions to the secular evolution of the orbital elements of the quasi-Keplerian orbit description.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Savard, Antoine. „Stabilité des bulles de masse négative dans un espace-temps de de Sitter“. Thèse, 2019. http://hdl.handle.net/1866/23817.

Der volle Inhalt der Quelle
Annotation:
L'existence de la masse négative a un sens parfaitement physique du moment que les conditions d'énergie dominante sont satisfaites par le tenseur énergie-impulsion correspondant. Jusqu'à maintenant, seules des configurations de masses négatives avaient été trouvées. On démontre l'existence de bulles de masse négative stables dans un espace-temps qui s'approche asymptotiquement d'un espace-temps de de Sitter. Les bulles sont des solutions aux équations d'Einstein qui correspondent à une région intérieure qui contient une distribution de masse spécifique séparée par une coquille mince de l'espace-temps à masse négative de Schwarzschild-de Sitter à l'extérieur. Ensuite, on applique les conditions de jonction d'Israel à la frontière de la bulle ce qui impose la conservation d'énergie-impulsion à travers la surface. Les conditions de jonction donnent une équation pour un potentiel pour le rayon de la bulle qui dépend de la distribution de masse à l'intérieur, ou vice versa. Finalement, on trouve un potentiel qui aboutit à une solution stable, statique et non-singulière, ce qui crée une distribution de masse interne qui satisfait les conditions d'énergie dominante partout à l'intérieur. Cependant, la bulle ne satisfait pas ces conditions. De plus, on trouve une solution stable, statique et non-singulière pour une géométrie interne de de Sitter pure. La solution est fondamentalement différente: elle requiert que la densité d'énergie de la bulle change avec le rayon. La condition d'énergie dominante est satisfaite partout.
Negative mass makes perfect physical sense as long as the dominant energy condition is satisfied by the corresponding energy-momentum tensor. Until now, only configurations of negative mass have been found. We demonstrate the existence of stable, negative-mass bubbles in an asymptotic de Sitter space-time. The bubbles are solutions of the Einstein equations which correspond to an interior region of space-time containing a specific distribution of mass separated by a thin wall from the exact, negative mass Schwarzschild-de Sitter space-time in the exterior. Then, we apply the Israel junction conditions at the wall which impose the conservation of energy and momentum across the wall. The junction conditions give rise to an effective potential for the radius of the wall that depends on the interior mass distribution, or vice versa. Finally, we find a potential that gives rise to stable, non-singular, static solutions, which yields an interior mass distribution that everywhere satisfies the dominant energy condition. However, the energy momentum of the wall does not satisfy the dominant energy condition. Moreover, we find a stable, non-singular, static solution for a pure de Sitter geometry inside the bubble. The solution is fundamentally different: the energy density of the bubble is no longer a constant, but now varies with the radius. The dominant energy condition is everywhere satisfied.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie