Dissertationen zum Thema „Medical Neurobiology“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Medical Neurobiology" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Taliaferro, Linda Kay. „Psychiatric Disorders as Potential Predictors in Medical Disease Development“. ScholarWorks, 2011. https://scholarworks.waldenu.edu/dissertations/939.
Der volle Inhalt der QuelleSalagic, Belma. „Regulation of COX-2 signaling in the blood brain barrier“. Thesis, Linköping University, Linköping University, Department of Physics, Chemistry and Biology, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-18113.
Der volle Inhalt der QuelleUpon an inflammation the immune system signals the brain by secreted cytokines to elicit central nervous responses such as fever, loss of appetite and secretion of stress hormones. Since the blood brain barrier, (BBB) protects the brain from unwanted material, molecules like cytokines are not allowed to cross the barrier and enter the brain. However, it is clear that they in some way can signal the brain upon an inflammation. Many suggestions concerning this signaling has been made, one being that cytokines bind to receptors on the endothelial cells of the blood vessels of the brain and trigger the production of prostaglandins that can cross the BBB. This conversion is catalyzed by the enzyme cyclooxygenase-2, (COX-2), which is induced by transcription factors like NF-κB in response to cytokines. One of the central nervous responses to inflammatory stimuli is activation of the HPA-axis whose main purpose is glucocorticoid production. Glucocorticoids inhibit the inflammatory response by suppressing gene transcription of pro-inflammatory genes including those producing prostaglandins through direct interference with transcription factors such as NF-κB or initiation of transcription of anti-inflammatory genes like IκB or IL-10. It has however not been clear if glucocorticoids can target the endothelial cells of the brain in order to provide negative feed-back on the immune-to-brain signaling, and in that way inhibit central nervous inflammatory symptoms. An anatomical prerequisite for such a mechanism would be that the induced prostaglandin production occurs in cells expressing GR. This has however never been demonstrated. Here I show that a majority of the brain endothelial cells expressing the prostaglandin synthesizing enzyme COX-2 in response to immune challenge also express the glucocorticoid receptor, (GR). This indicates that immune-to-brain signaling is a target for negative regulation of inflammatory signaling executed by glucocorticoids and identifies brain endothelial GR as a possible future drug target for treatment of central nervous responses to inflammation such as fever and pain.
Whicker, Wyatt, W. Drew Gill und Russell W. Brown. „DISCOVERY OF A NOVEL ANTI-NEUROINFLAMMATORY TREATMENT FOR AUDITORY SENSORIMOTOR GATING IN TWO RODENT MODELS OF SCHIZOPHRENIA“. Digital Commons @ East Tennessee State University, 2018. https://dc.etsu.edu/asrf/2018/schedule/204.
Der volle Inhalt der QuelleBatten, Seth R. „GLUTAMATE DYSREGULATION AND HIPPOCAMPAL DYSFUNCTION IN EPILEPTOGENESIS“. UKnowledge, 2013. http://uknowledge.uky.edu/medsci_etds/1.
Der volle Inhalt der QuelleIghodaro, Eseosa T. „STUDYING VASCULAR MORPHOLOGIES IN THE AGED HUMAN BRAIN USING LARGE AUTOPSY DATASETS“. UKnowledge, 2018. https://uknowledge.uky.edu/neurobio_etds/19.
Der volle Inhalt der QuelleXing, Bin. „THE EFFECT OF PPARγ ACTIVATION BY PIOGLITAZONE ON THE LIPOPOLYSACCHARIDE-INDUCED PGE2 AND NO PRODUCTION: POTENTIALUNDERLYING ALTERATION OF SIGNALING TRANSDUCTION“. UKnowledge, 2008. http://uknowledge.uky.edu/gradschool_diss/629.
Der volle Inhalt der QuelleFu, Weisi. „PROTEIN KINASE A AND EPAC MEDIATE CHRONIC PAIN AFTER INJURY: PROLONGED INHIBITION BY ENDOGENOUS Y1 RECEPTORS IN DORSAL HORN“. UKnowledge, 2016. https://uknowledge.uky.edu/physiology_etds/31.
Der volle Inhalt der QuelleSalmeron, Kathleen Elizabeth. „INVESTIGATIONS OF INTERLEUKIN-1 ALPHA AS A NOVEL STROKE THERAPY IN EXPERIMENTAL ISCHEMIC STROKE“. UKnowledge, 2018. https://uknowledge.uky.edu/neurobio_etds/20.
Der volle Inhalt der QuelleIvy, Devon. „DEFINING THE RADIORESPONSE OF MOSSY CELLS“. CSUSB ScholarWorks, 2018. https://scholarworks.lib.csusb.edu/etd/633.
Der volle Inhalt der QuelleBardgett, Megan Elyse. „NEURAL MECHANISMS OF SYMPATHETIC ACTIVATION DURING HYPERINSULINEMIA AND OBESITY-INDUCED HYPERTENSION“. UKnowledge, 2010. http://uknowledge.uky.edu/gradschool_diss/46.
Der volle Inhalt der QuelleBowles, Olivia M. „Potential Treatments for Malformation Associated Epilepsy“. VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4412.
Der volle Inhalt der QuelleGilmer, Lesley Knight. „AGE MAY BE HAZARDOUS TO OUTCOME FOLLOWING TRAUMATIC BRAIN INJURY: THE MITOCHONDRIAL CONNECTION“. Lexington, Ky. : [University of Kentucky Libraries], 2009. http://hdl.handle.net/10225/1135.
Der volle Inhalt der QuelleTitle from document title page (viewed on May 11, 2010). Document formatted into pages; contains: viii, 161 p. : ill. Includes abstract and vita. Includes bibliographical references (p. 130-154).
Davis, Laurie Michelle Helene. „THE UNDERLYING MECHANISM(S) OF FASTING INDUCED NEUROPROTECTION AFTER MODERATE TRAUMATIC BRAIN INJURY“. UKnowledge, 2008. http://uknowledge.uky.edu/gradschool_diss/673.
Der volle Inhalt der QuelleHinzman, Jason Michael. „DISRUPTIONS IN THE REGULATION OF EXTRACELLULAR GLUTAMATE IN THE RAT CENTRAL NERVOUS SYSTEM AFTER DIFFUSE BRAIN INJURY“. UKnowledge, 2012. http://uknowledge.uky.edu/neurobio_etds/2.
Der volle Inhalt der QuelleCebak, John. „MITOCHONDRIAL AND NEUROPROTECTIVE EFFECTS OF PHENELZINE RELATED TO SCAVENGING OF NEUROTOXIC LIPID PEROXIDATION PRODUCTS“. UKnowledge, 2015. http://uknowledge.uky.edu/neurobio_etds/12.
Der volle Inhalt der QuelleTalauliker, Pooja Mahendra. „CHARACTERIZATION AND OPTIMIZATION OF MICROELECTRODE ARRAYS FOR GLUTAMATE MEASUREMENTS IN THE RAT HIPPOCAMPUS“. Lexington, Ky. : [University of Kentucky Libraries], 2010. http://hdl.handle.net/10225/1116.
Der volle Inhalt der QuelleTitle from document title page (viewed on May 17, 2010). Document formatted into pages; contains: xii, 180 p. : ill. (some col.). Includes abstract and vita. Includes bibliographical references (p. 152-173).
Yonutas, Heather M. „NOVEL TARGETS FOR MITOCHONDRIAL DYSFUNCTION FOLLOWING TRAUMATIC BRAIN INJURY“. UKnowledge, 2016. https://uknowledge.uky.edu/neurobio_etds/15.
Der volle Inhalt der QuelleDuggan, Alexandra. „Synaptic protein expression in human postmortem brain tissue of autism spectrum disorder“. Digital Commons @ East Tennessee State University, 2020. https://dc.etsu.edu/honors/549.
Der volle Inhalt der QuelleKhaychuk, Vadim. „PRION CHARACTERIZATION USING CELL BASED APPROACHES“. UKnowledge, 2012. http://uknowledge.uky.edu/microbio_etds/2.
Der volle Inhalt der QuelleSonne, James H. „EFFECTS OF INTRANASALLY ADMINISTERED DNSP-11 ON THE CENTRAL DOPAMINE SYSTEM OF NORMAL AND PARKINSONIAN FISCHER 344 RATS“. UKnowledge, 2013. http://uknowledge.uky.edu/neurobio_etds/5.
Der volle Inhalt der QuelleHunt, Robert F. III. „LOCAL SYNAPTIC NETWORK INTERACTIONS IN THE DENTATE GYRUS OF A CORTICAL CONTUSION MODEL OF POSTTRAUMATIC EPILEPSY“. UKnowledge, 2010. http://uknowledge.uky.edu/gradschool_diss/94.
Der volle Inhalt der QuelleSauerbeck, Andrew David. „TRICHLOROETHYLENE EXPOSURE AND TRAUMATIC BRAIN INJURY INTERACT AND PRODUCE DUAL INJURY BASED PATHOLOGY AND PIOGLITAZONE CAN ATTENUATE DEFICITS FOLLOWING TRAUMATIC BRAIN INJURY“. UKnowledge, 2011. http://uknowledge.uky.edu/gradschool_diss/133.
Der volle Inhalt der QuelleClark, Jonathan Darrell. „FUNCTIONAL CONNECTIVITY FOR CONFIGURAL AND FEATURAL FACE PROCESSING IN THE BROAD AUTISM PHENOTYPE“. UKnowledge, 2011. http://uknowledge.uky.edu/gradschool_diss/174.
Der volle Inhalt der QuelleStephens, Michelle Lee. „GLUTAMATE REGULATION IN THE HIPPOCAMPAL TRISYNAPTIC PATHWAY IN AGING AND STATUS EPILEPTICUS“. UKnowledge, 2009. http://uknowledge.uky.edu/gradschool_diss/736.
Der volle Inhalt der QuelleAlterman, Julia F. „A CNS-Active siRNA Chemical Scaffold for the Treatment of Neurodegenerative Diseases“. eScholarship@UMMS, 2019. https://escholarship.umassmed.edu/gsbs_diss/1027.
Der volle Inhalt der QuelleGriggs, Ryan B. „TARGETING METHYLGLYOXAL AND PPAR GAMMA TO ALLEVIATE NEUROPATHIC PAIN ASSOCIATED WITH TYPE 2 DIABETES“. UKnowledge, 2015. https://uknowledge.uky.edu/physiology_etds/24.
Der volle Inhalt der QuelleSimmons, Christopher Ryan. „GENOME-WIDE ASSOCIATION STUDIES AT THE INTERFACE OF ALZHEIMER’S DISEASE AND EPIDEMIOLOGICALLY RELATED DISORDERS“. UKnowledge, 2011. http://uknowledge.uky.edu/gradschool_diss/824.
Der volle Inhalt der QuelleGouda, Mazen M. „Axon Initial Segment Integrity in Aging and Traumatic Brain Injury“. VCU Scholars Compass, 2019. https://scholarscompass.vcu.edu/etd/5993.
Der volle Inhalt der QuelleWelleford, Andrew. „Autologous Peripheral Nerve Grafts to the Brain for the Treatment of Parkinson's Disease“. UKnowledge, 2019. https://uknowledge.uky.edu/neurobio_etds/23.
Der volle Inhalt der QuellePeretti, Madeline. „DNA methylation of the clusterin promoter: Associations with Alzheimer’s Disease risk and related phenotypes“. Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2019. https://ro.ecu.edu.au/theses/2172.
Der volle Inhalt der QuelleDeng, Ying. „ROLE OF THE REACTIVE OXYGEN SPECIES PEROXYNITRITE IN TRAUMATIC BRAIN INJURY“. UKnowledge, 2008. http://uknowledge.uky.edu/gradschool_diss/667.
Der volle Inhalt der QuelleXiong, Yiqin. „ROLE OF REACTIVE OXYGEN SPECIES PEROXYNITRITE IN TRAUMATIC SPINAL CORD INJURY“. UKnowledge, 2008. http://uknowledge.uky.edu/gradschool_diss/657.
Der volle Inhalt der QuelleRussell, Nicholas H. „Heme Oxygenase 1 expression after traumatic brain injury and effect of pharmacological manipulation on functional recovery“. VCU Scholars Compass, 2017. https://scholarscompass.vcu.edu/etd/5525.
Der volle Inhalt der QuelleClark, Jordan Mills. „ROLE OF CYCLOPHILIN D IN SECONDARY SPINAL CORD AND BRAIN INJURY“. UKnowledge, 2009. http://uknowledge.uky.edu/gradschool_diss/730.
Der volle Inhalt der QuelleJoshi, Aashish. „SUBSTRATE AND REGULATION OF MITOCHONDRIAL μ-CALPAIN“. UKnowledge, 2009. http://uknowledge.uky.edu/gradschool_diss/80.
Der volle Inhalt der QuelleManiskas, Michael E. „LOOKING TO THE FUTURE OF STROKE TREATMENT: COMBINING RECANALIZATION AND NEUROPROTECTION IN ACUTE ISCHEMIC STROKE“. UKnowledge, 2016. http://uknowledge.uky.edu/neurobio_etds/17.
Der volle Inhalt der QuelleLittrell, Ofelia Meagan. „NIGROSTRIATAL DOPAMINE-NEURON FUNCTION FROM NEUROTROPHIC-LIKE PEPTIDE TREATMENT AND NEUROTROPHIC FACTOR DEPLETION“. UKnowledge, 2011. http://uknowledge.uky.edu/neurobio_etds/1.
Der volle Inhalt der QuelleThummala, Suneel K. „Axon Initial Segment Stability in Multiple Sclerosis“. VCU Scholars Compass, 2015. http://scholarscompass.vcu.edu/etd/4038.
Der volle Inhalt der QuelleGonzalez, Eric James. „A Role For Transforming Growth Factor-Beta In Urinary Bladder Dysfunction With Cyclophosphamide-Induced Cystitis“. ScholarWorks @ UVM, 2016. http://scholarworks.uvm.edu/graddis/553.
Der volle Inhalt der QuelleMartha, Sarah R. „NEUROCHEMICAL FACTORS ASSOCIATED WITH THE INITIAL PATHOPHYSIOLOGICAL REACTION TO LARGE VESSEL OCCLUSION STROKE“. UKnowledge, 2019. https://uknowledge.uky.edu/nursing_etds/43.
Der volle Inhalt der QuelleLee, Franklin A. „How the manipulation of the Ras homolog enriched in striatum alters the behavioral and molecular progression of Huntington’s disease“. ScholarWorks@UNO, 2015. http://scholarworks.uno.edu/td/2092.
Der volle Inhalt der QuelleSuri, Nikita. „Superbursts: Investigation of Abnormal Paroxysmal Bursting Activity in Nerve Cell Networks In Vitro“. Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1157655/.
Der volle Inhalt der QuelleReneer, Dexter V. „BLAST-INDUCED BRAIN INJURY: INFLUENCE OF SHOCKWAVE COMPONENTS“. UKnowledge, 2012. http://uknowledge.uky.edu/neurobio_etds/3.
Der volle Inhalt der QuelleWilliamitis, Joseph M. „Using fMRI BOLD Imaging to Motion-Correct Associated, Simultaneously Imaged PET Data“. Wright State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=wright1620585748146734.
Der volle Inhalt der QuellePatel, Kaushal S. „Post-TBI Hippocampal Neurogenesis in Different TBI Models“. VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4134.
Der volle Inhalt der QuelleStephenson, Jeannie B. „Longitudinal Quantitative Analysis of Gait and Balance in Friedreich's Ataxia“. Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5623.
Der volle Inhalt der QuelleBuechel, Heather M. „CHANGES IN SLEEP ARCHITECTURE AND COGNITION WITH AGE AND PSYCHOSOCIAL STRESS: A STUDY IN FISCHER 344 RATS“. UKnowledge, 2013. http://uknowledge.uky.edu/pharmacol_etds/4.
Der volle Inhalt der QuelleBiayna, Rodríguez Josep. „Using Phosphorodiamidate Morpholino Oligomers (PMOs) to characterize the role of neurofibromin in cell physiology“. Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/378358.
Der volle Inhalt der QuelleLa neurofibromina és el producte del gen NF1, que mutat causa la Neurofibromatosis de tipus 1. Tot i que en l'actualitat, encara ens cal entendre millor el rol d'aquesta proteïna en la fisiologia cel•lular, l'activitat Ras-GAP és la funció bioquímica més ben caracteritzada de la neurofibromina. Aquesta funció està regulada per l'splicing alternatiu de l'exó 23a (E23a). En aquesta tesi ens vàrem proposar comprendre millor el paper d'aquest splicing alternatiu durant el procés de diferenciació neuronal, amb l'objectiu de proporcionar nova informació sobre els problemes cognitius i d'aprenentatge associats a aquesta malaltia. Degut a la gran grandària de la neurofibromina i a la dificultat de manipular-la in vitxo, es varen utilitzar Phosphorodiamidate Morpholino Oligomers (PMOs) per modificar la composició exònica del mARN (per tant l'estructura resultant de la neurofibromina) sense alterar les condicions fisiològiques d'expressió del gen NF 1 . Es va desenvolupar un sistema basat en PMOs per forçar l'expressió de l'isoforma tipus II (+E23a) o tipus I (-E23a) del gen NF1 en cèl•lules PC12, un model de diferenciació neuronal, en presència o absència de Nerve Growth Factor (NGF). A més, per entendre la importància de 1'E23a es va establir un grup de metodologies i assajos funcionals per poder determinar diferents respostes cel•lulars i valorar la funció d'aquest en el procés de diferenciació neuronal. Els nostres resultats van mostrar que forçar l'isoforma tipus I (-E23a) no era suficient per induir la diferenciació de les cèl•lules PC12 en absència de NGF. No obstant això, qualsevol alteració en la relació entre les isoformes tipus I/II en presència de NGF, ja sigui d'una manera quantitativa o dependent del temps, interferia en el correcte procés de diferenciació neuronal, en particular, alterant la correcta formació de neurites, així com l'adequada regulació de les vies de senyalització RAS/MAPK i cAMP/PKA. En conjunt, els resultats d'aquesta tesi indiquen que la regulació de l'splicing alternatiu de 1'E23a del gen NF1 permet un ajust fi de les vies RAS/MAPK i cAMP/PKA a través de la activitat GAP de la neurofibromina, d'una forma oposada i coordinada al llarg del temps durant el procés de diferenciació neuronal.
Jayatunga, Dona Pamoda Wajirapanie. „Investigation of selected nutraceuticals to protect against mitochondrial dysfunction: Potential therapeutic role in Alzheimer’s disease“. Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2020. https://ro.ecu.edu.au/theses/2368.
Der volle Inhalt der QuelleMasdeu, Camara Maria del Mar. „Papel de la tirosina quinasa Ack1 en la neuritogénesis y señalización regulada por neurotrofinas y moléculas de guía axonal“. Doctoral thesis, Universitat de Barcelona, 2014. http://hdl.handle.net/10803/145719.
Der volle Inhalt der QuelleAck1 is a cytoplasmic tyrosine kinase highly expressed in Central Nervous System (Urena et al., 2005; La Torre et al., 2006) that has several protein-protein interaction domains and a catalytic domain that is autophosphorylated, and this process regulates, at least in part, the action of this protein (Lougheed et al., 2004). Moreover, it has been demonstrated that Ack1 is localized in dendrites and presynaptic regions and that its expression is up-regulated by an increase of neuronal activity (Urena et al., 2005). Most of the known functions of Ack1 have been elucidated from interactions of Ack1 with several proteins. But, most of the physiologically functions of Ack1 remain to be described, especially in CNS. For this reason, the aim of this thesis has been to unravel some of these functions on CNS that are described through 5 chapters. In the 1st chapter we have explained the production of a monoclonal antibody against Ack1 that allowed us to improve the specificity of our experiments and to study Ack1 at a functional level. In the 2nd chapter we have demonstrated that Ack1 is a component of the neurotrophin pathway, because it is phosphorylated as a response to neurotrophins and interacts with Trk receptors. Moreover, we also have described how changes in Ack1 expression alter neuritogenesis and axonal and dendritic ramification. In the 3th chapter we have analyzed the interaction of Ack1 with the postsynaptical proteins CaMKII and PSD-95, its phosphorylation in response to excitatory stimulus such as NMDA or glutamate and we have described that a lack of Ack1 expression decrease the size of axonal buttons. These data suggest an implication of Ack1 at a synaptic level. In the 4th chapter we focused on the determination of the interaction of Ack1 and FAK, the Ack1 phosphorylation in response to Netrin-1 and the effect of Ack1 in chemoattraction regulated by Netrin-1. Finally, in the 5th chapter we studied the phosphorylation sites and the possible interacting proteins of FAK and Ack1 by mass spectrometry in samples of mice brain in development, of adult mice brain and of adult mice overstimulated brain. - Bibliography La Torre A, del Rio JA, Soriano E, Urena JM (2006) Expression pattern of ACK1 tyrosine kinase during brain development in the mouse. Gene Expr Patterns 6:886-892. Lougheed JC, Chen RH, Mak P, Stout TJ (2004) Crystal structures of the phosphorylated and unphosphorylated kinase domains of the Cdc42-associated tyrosine kinase ACK1. The Journal of biological chemistry 279:44039-44045. Urena JM, La Torre A, Martinez A, Lowenstein E, Franco N, Winsky-Sommerer R, Fontana X, Casaroli-Marano R, Ibanez-Sabio MA, Pascual M, Del Rio JA, de Lecea L, Soriano E (2005) Expression, synaptic localization, and developmental regulation of Ack1/Pyk1, a cytoplasmic tyrosine kinase highly expressed in the developing and adult brain. The Journal of comparative neurology 490:119-132.