Auswahl der wissenschaftlichen Literatur zum Thema „Medical physics“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Medical physics" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Medical physics":

1

Wagner, L. K., M. J. Bronskill, G. T. Chen, T. L. Chenevert, E. Gardner, R. Gelse, M. Madsen, E. R. Ritenour, B. Schueler und J. A. Seibert. „Medical physics.“ Radiology 190, Nr. 3 (März 1994): 945–51. http://dx.doi.org/10.1148/radiology.190.3.8115661.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Leuenberger, Ronald, Ryan Kocak, David W. Jordan und Tim George. „Medical Physics“. Health Physics 115, Nr. 4 (Oktober 2018): 512–22. http://dx.doi.org/10.1097/hp.0000000000000894.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Huda, W., J. M. Boone, S. Connors, A. Fenster, J. C. Gore, J. C. Honeyman, M. Madsen, E. L. Nickoloff, R. M. Nishikawa und L. K. Wagner. „Medical physics.“ Radiology 198, Nr. 3 (März 1996): 941–49. http://dx.doi.org/10.1148/radiology.198.3.8628902.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lamsal, Min Raj. „Medical Science and Physics“. Himalayan Physics 5 (05.07.2015): 91–97. http://dx.doi.org/10.3126/hj.v5i0.12880.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The study of physics seems to be theoretical or abstract. The connections between physics and real life can seem remote. But in reality physics is not a purely abstract subject. Like other branches of science, physics has a pure theoretical side and an applied side. The principles of physics are applied in a vast range of contexts from the building of bridges to the design of integrated circuits. Much of the technological revolution has its foundations in the applied physics. One of the major applications of physics which covers vast area of scientific knowledge is medicine. The knowledge of physics is essential for ultrasound, hologram, X-rays, laser therapy, radiotherapy, endoscopy, MRI, CT scanning, ECG, EEG, PET and so on in the field of medical science. The theoretical principles have to be learned and understood first if the applications are to be understood The Himalayan Physics Vol. 5, No. 5, Nov. 2014 Page: 91-97
5

Mahesh, Mahadevappa. „Medical Physics 3.0“. Journal of the American College of Radiology 18, Nr. 12 (Dezember 2021): 1596–97. http://dx.doi.org/10.1016/j.jacr.2021.10.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Samei, Ehsan. „Medical Physics 3.0“. Health Physics 116, Nr. 2 (Februar 2019): 247–55. http://dx.doi.org/10.1097/hp.0000000000001022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Feder, Toni. „Medical Physics Fellowships“. Physics Today 55, Nr. 3 (März 2002): 33. http://dx.doi.org/10.1063/1.4796677.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Gibson, A. P., E. Cook und A. Newing. „Teaching Medical Physics“. Physics Education 41, Nr. 4 (20.06.2006): 301–6. http://dx.doi.org/10.1088/0031-9120/41/4/001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Vu, Hoang T. „Medical Health Physics“. Health Physics 92, Nr. 2 (Februar 2007): 187. http://dx.doi.org/10.1097/01.hp.0000252347.45110.71.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Poudel, Parashu Ram. „Physics in Medical Science“. Himalayan Physics 2 (31.07.2011): 43–46. http://dx.doi.org/10.3126/hj.v2i2.5210.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The domain of Physics covers vast area of scientific knowledge. Basic research on assemblies of atomic or nuclear radiation and gyromagnetic moments led to powerful technique for studying molecular structure as well as solid lattices. It led to invention and development of modern medical diagnostic and theraputic tools which have revolutionized the medical practices. Advancement in medical researches as seen today will be well-nigh impossible without the use of the finding of Physics. The funding made on Physics is in fact another way of funding made on human health.Keywords: Radioactivity; Crystallography; Radioimmune assay; MRI; CAT; PETThe Himalayan PhysicsVol.2, No.2, May, 2011Page: 43-46Uploaded Date: 1 August, 2011

Dissertationen zum Thema "Medical physics":

1

Lazarine, Alexis D. „Medical physics calculations with MCNP: a primer“. Texas A&M University, 2006. http://hdl.handle.net/1969.1/4297.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The rising desire for individualized medical physics models has sparked a transition from the use of tangible phantoms toward the employment of computational software for medical physics applications. One such computational software for radiation transport modeling is the Monte Carlo N-Particle (MCNP) radiation transport code. However, no comprehensive document has been written to introduce the use of the MCNP code for simulating medical physics applications. This document, a primer, addresses this need by leading the medical physics user through the basic use of MCNP and its particular application to the medical physics field. This primer is designed to teach by example, with the aim that each example will illustrate a practical use of particular features in MCNP that are useful in medical physics applications. These examples along with the instructions for reproducing them are the results of this thesis research. These results include simulations of: dose from Tc-99m diagnostic therapy, calculation of Medical Internal Radiation Dose (MIRD) specific absorbed fraction (SAF) values using the ORNL MIRD phantom, x-ray phototherapy effectiveness, prostate brachytherapy lifetime dose calculations, and a radiograph of the head using the Zubal head phantom. Also included are a set of appendices that include useful reference data, code syntax, and a database of input decks including the examples in the primer. The sections in conjunction with the appendices should provide a foundation of knowledge regarding the MCNP commands and their uses as well as enable users to utilize the MCNP manual effectively for situations not specifically addressed by the primer.
2

Rolland, Jannick Paule Yvette. „Factors influencing lesion detection in medical imaging“. Diss., The University of Arizona, 1990. http://hdl.handle.net/10150/185096.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
An important goal in medical imaging is the assessment of image quality in a way that relates to clinical efficacy. An objective approach is to evaluate the performance of diagnosis for specific tasks, using ROC analysis. We shall concentrate here on classification tasks. While many factors may confine the performance achieved for these tasks, we shall investigate two main limiting factors: image blurring and object variability. Psychophysical studies followed by ROC analysis are widely used for system assessment, but it is of great practical interest to be able to predict the outcome of psychophysical studies, especially for system design and optimization. The ideal observer is often chosen as a standard of comparison for the human observer since, at least for simple tasks, its performance can be readily calculated using statistical decision theory. We already know, however, of cases reported in the literature where the human observer performs far below ideal, and one of the purposes of this dissertation is to determine whether there are other practical circumstances where human and ideal performances diverge. Moreover, when the complexity of the task increases, the ideal observer becomes quickly intractable, and other observers such as the Hotelling and the nonprewhitening (npw) ideal observers may be considered instead. A practical problem where our intuition tells us that the ideal observer may fail to predict human performance occurs with imaging devices that are characterized by a PSF having long spatial tails. The investigation of the impact of long-tailed PSFs on detection is of great interest since they are commonly encountered in medical imaging and even more generally in image science. We shall show that the ideal observer is a poor predictor of human performance for a simple two-hypothesis detection task and that linear filtering of the images does indeed help the human observer. Another practical problem of considerable interest is the effect of background nonuniformity on detectability since, it is one more step towards assessing image quality for real clinical images. When the background is known exactly (BKE), the Hotelling and the npw ideal observers predict that detection is optimal for an infinite aperture; a spatially varying background (SVB) results in an optimum aperture size. Moreover, given a fixed aperture size and a BKE, an increase in exposure time is highly beneficial for both observers. For SVB, on the other hand, the Hotelling observer benefits from an increases in exposure time, while the npw ideal observer quickly saturates. In terms of human performance, results show a good agreement with the Hotelling-observer predictions, while the performance disagrees strongly with the npw ideal observer.
3

Gharama, Huda. „A Planar Lightguide Power Combiner for Medical Applications“. University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1508173552760426.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Redd, Randall Alex. „Radiation dosimetry and medical physics calculations using MCNP 5“. Texas A&M University, 2004. http://hdl.handle.net/1969.1/467.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Six radiation dosimetry and medical physics problems were analyzed using a beta version of MCNP 5 as part of an international intercomparison of radiation dosimetry computer codes, sponsored by the European Commission committee on the quality assurance of computational tools in radiation dosimetry. Results have been submitted to the committee, which will perform the inter-code comparison and publish the results independently. A comparison of the beta version of MCNP 5 with MCNP 4C2 is made, as well as a comparison of the new Doppler broadening feature. Comparisons are also made between the *F8 and F6 tallies, neutron tally results with and without the use of the S(a,b) cross sections, and analytically derived peak positions with pulse height distributions of a Ge detector obtained using the beta version of MCNP 5. The following problems from the study were examined: Problem 1 was modeled to determine the near-field angular anisotropy and dose distribution from a high dose rate 192Ir brachytherapy source in a surrounding spherical water phantom. Problem 2 was modeled to find radial and axial dose in an artery wall from an intravascular brachytherapy 32P source. Problem 4 was modeled to investigate the response of a four-element TLD-albedo personal dosimeter from neutrons and/or photons. Significant differences in neutron response with S(a,b) cross sections compared to results without these cross sections were found. Problem 5 was modeled to obtain air kerma backscatter profiles for 150 and 200 kVp X-rays upon a water phantom. Air kerma backscatter profiles were determined along the apothem and diagonal of the front face of the phantom. A comparison of experimental results is also made. Problem 6 was modeled to determine indirect spectral and energy fluences upon two neutron detectors within a calibration bunker. The largest indirect contribution was found to come from low energy neutrons with an average angle of 47o where 0o is a plane parallel to the floor. Problem 7 was modeled to obtain pulse height distributions for a germanium detector. Comparison of analytically derived peaks with peak positions in the spectra are made. An examination of the Doppler broadening feature is also included.
5

Wang, Yi Zhen 1965. „Photoneutrons and induced activity from medical linear accelerators“. Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=81453.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This study involves the measurement of the neutron equivalent dose ( NED) and the induced activity produced from medical linear accelerators. For the NED, various parameters such as the profile, field effects and energy responses were studied. The NED in a Solid Water(TM) phantom was measured and a new quantity, the neutron equivalent dose tissue-air ratio (NTAR), was defined and determined. Neutron production for electron beams was also measured. For the induced activity, comparisons were carried out between different linacs, fields and dose rates. The half life and activation saturation were also studied. A mathematical model of induced activity was developed to explain the experimental results. Room surveys of NED and induced activity were performed in and around a high energy linear accelerator room. Unwanted doses from photoneutrons and induced activity to the high energy linear accelerator radiotherapy staff and patient were estimated.
6

Förster, Fabian Alexander. „Novel CMOS Devices for High Energy Physics and Medical Applications“. Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670504.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Els experiments d’alta energia de física (HEP) a col·lisions de partícules demostren la nostra comprensió de l’estructura i la dinàmica de la matèria. Per avançar en el camp, els sistemes d’acceleradors s’actualitzen periòdicament a energies i lluminositats més elevades. Els experiments han de mantenir-se al punt millorant la seva instrumentació de detecció. Els detectors de píxels de silici tenen un paper crític en els experiments HEP. Gràcies a la seva excel·lent resolució de posició, compacitat, velocitat i duresa de la radiació, permeten la reconstrucció de la pista de partícules en entorns d’alta radiació com els col·lisionadors de hadrons. Al seu torn, el seu rendiment permet una excel·lent resolució de paràmetres d’impacte de pista, un ingredient clau per a la identificació de vèrtexs secundaris i l’etiquetatge b del jet. Actualment, el detector estàndard de píxels consisteix en un sensor segmentat, en el qual cada píxel està connectat a un canal de lectura d’un circuit integrat d’aplicacions específiques per a aplicacions (ASIC) mitjançant una tècnica complicada i cara, anomenada enllaç de cop. Un mètode alternatiu per als dispositius de píxels híbrids són els detectors monolítics, que combinen la detecció de partícules i les tasques de processament de senyal al mateix substrat. Aquests tipus de detectors desenvolupats en el procés CMOS han estat utilitzats en el passat, però només recentment es basen en dispositius de radiació durs. sobre aquesta tecnologia s’han proposat. En aquesta tesi s’investiga un primer prototip a mida completa d’un detector monolític desenvolupat en la tecnologia CMOS d’Alta Voltatge (HV-CMOS) com a dispositiu de píxel per a les capes exteriors del futur rastrejador ATLAS actualitzat, que es troba al Gran Col·lisionador d’Hadrons ( LHC) al CERN. A més de l’aplicació d’aquesta tecnologia en experiments HEP, la detecció de fotons de raigs X suaus també s’investiga en una matriu en un dels detectors de píxels HV-CMOS. Per últim, s’explora l’ús de dispositius CMOS per a la detecció de fotons de gairebé infraroig (NIR) amb fotodiode d’Avalanche (APD).
Los experimentos de física de alta energía (HEP) en colisionadores de partículas sondean nuestra comprensión de la estructura y la dinámica de la materia. Para avanzar en el campo, los sistemas de aceleración se actualizan periódicamente a mayores energías y luminosidades. Los experimentos tienen que mantenerse al día, mejorando la instrumentación de su detector. Los detectores de píxeles de silicio desempeñan un papel fundamental en los experimentos con HEP. Gracias a su excelente resolución de posición, compacidad, velocidad y dureza de radiación, permiten la reconstrucción de pistas de partículas en entornos de alta radiación como colisionadores de hadrones. A su vez, su rendimiento permite una excelente resolución de parámetros de impacto en la pista, un ingrediente clave para la identificación secundaria de vértices y el etiquetado de chorro b. Actualmente, el detector de píxeles estándar consta de un sensor segmentado, en el que cada píxel está conectado a un canal de lectura de un circuito integrado de aplicación específica (ASIC) a través de una técnica complicada y costosa llamada unión por golpes. Un enfoque alternativo a los dispositivos de píxeles híbridos son los detectores monolíticos, que combinan la detección de partículas y las tareas de procesamiento de señales en el mismo sustrato. Estos tipos de detectores desarrollados en el proceso CMOS se han utilizado en el pasado, pero solo relativamente recientemente basados ​​en dispositivos de radiación dura sobre esta tecnología se han propuesto. En esta tesis, se investiga un primer prototipo de tamaño completo de un detector monolítico desarrollado en la tecnología CMOS de alto voltaje (HV-CMOS) como un dispositivo de píxeles para las capas externas del rastreador ATLAS de actualización futura, que se encuentra en el Gran Colisionador de Hadrones ( LHC) en el CERN. Además de la aplicación de esta tecnología en experimentos HEP, la detección de fotones de rayos X blandos también se investiga en una matriz en uno de los detectores de píxeles HV-CMOS. Por último, se explora el uso de dispositivos CMOS para la detección de fotones de infrarrojo cercano (NIR) con Avalanche Photodiode (APD).
High Energy Physics (HEP) experiments at particle colliders probe our understanding of the structure and dynamics of matter. In order to advance the field, the accelerator systems are periodically upgraded to higher energies and luminosities. Experiments have to keep up, by improving their detector instrumentation. Silicon pixel detectors play a critical role in HEP experiments. Thanks to their excellent position resolution, compactness, speed and radiation hardness, they enable particle track reconstruction in high radiation environments like hadron colliders. In turn, their performance allows excellent track impact parameter resolution, a key ingredient for secondary vertex identification and jet b-tagging. Currently the standard pixel detector consists of a segmented sensor, in which each pixel is connected to a readout channel of an Application-Specific Integrated Circuit (ASIC) through a complicated, and expensive, technique called bump bonding. An alternative approach to hybrid pixel devices are monolithic detectors, which combine the particle sensing and the signal processing tasks in the same substrate.These kinds of detectors developed in the CMOS process have been used in the past, but only relatively recently radiation hard devices based on this technology have been proposed. In this thesis a first full size prototype of a monolithic detector developed in the High Voltage CMOS (HV-CMOS) technology is investigated as a pixel device for the outer layers of the future upgrade ATLAS tracker, which is located in the Large Hadron Collider (LHC) at CERN. Besides the application of this technology in HEP experiments, the detection of soft X-ray photons is also investigated in one matrix in one of the HV-CMOS pixel detectors. Lastly, the usage of CMOS devices for the detection of Near-Infrared (NIR) photons with Avalanche Photodiode (APD) is explored.
7

Andrews, Brian. „Computational Solutions for Medical Issues in Ophthalmology“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case15275972120621.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Scannavini, Maria Giulia. „Medical Compton cameras based on semiconductor detectors“. Thesis, University College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251785.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ratcliffe, Naomi. „Potential of a compact low energy proton accelertor for medical applications“. Thesis, University of Huddersfield, 2014. http://eprints.hud.ac.uk/id/eprint/23711/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This thesis explores the potential of a compact low energy (<10MeV) proton accelerator for medical applications such as the production of neutrons for cancer neutron therapy and the production of SPECT (Single Photon Emission Computed Tomography) and PET (Positron Emission Tomography) radioisotopes. During the course of this study the simulation code GEANT4 was used to study yields of these neutrons and isotopes from the typically low threshold high cross-­‐section (p,n) reactions. Due to the limits of the current models within GEANT4 some development of a new data-­‐driven model for low energy proton interactions was undertaken and has been tested here. This model was found to be suitably reliable for continued study into the low energy production of positron emitting, PET, isotopes of copper and gallium as replacements for the main SPECT isotope technetium-­‐99m. While 99mTc is currently the most popular radioisotope being used in over 90% of the worlds nuclear medicine diagnostic procedures supply is under threat by the impending shut down of the current reactor based sources. Simulations of both thin and thick targets were carried out to study the potential of low energy production of these isotopes. The final activity of the radioisotopes after irradiation of these targets produced by the simulations has been shown here to be sufficient for multiple doses. The useable activity is dependent on the efficiency of the extraction process and the time between irradiation and administration.
10

Lazarus, Graeme Lawrence. „Validation of Monte Carlo-based calculations for small irregularly shaped intra-operative radiotherapy electron beams“. Doctoral thesis, University of Cape Town, 2015. http://hdl.handle.net/11427/16680.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Medical physics":

1

Hollins, Martin. Medical physics. Walton-on-Thames: Nelson, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Peet, Debbie, und Emma Chung. Practical Medical Physics. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781315142425.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Pope, Jean A. Medical physics: Imaging. Oxford: Heinemann, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hendee, William R. Medical imaging physics. 3. Aufl. St. Louis: Mosby Year Book, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

E, Williams Lawrence, Hrsg. Nuclear medical physics. Boca Raton, FL: CRC Press, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Society, Biological Engineering. Medical engineering & physics. Oxford, UK: Butterworth-Heinemann, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Delchar, T. A. Physics in medical diagnosis. London: Chapman & Hall, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Keevil, Stephen, Renato Padovani, Slavik Tabakov, Tony Greener und Cornelius Lewis. Introduction to Medical Physics. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429155758.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sun, Jidi. MATLAB for Medical Physics. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7565-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Tabakov, Slavik. Encyclopaedia of medical physics. Boca Raton: CRC Press, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Medical physics":

1

Patel, Nisha R., Michael L. Wong, Anthony E. Dragun, Stephan Mose, Bernadine R. Donahue, Jay S. Cooper, Filip T. Troicki et al. „Medical Physics“. In Encyclopedia of Radiation Oncology, 490–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-85516-3_762.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hendee, William R., und Michael Yester. „Medical Physics“. In AIP Physics Desk Reference, 467–91. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4757-3805-6_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wynn-Jones, Andrea, Caroline Reddy, John Gittins, Philip Baker, Anna Mason und Greg Jolliffe. „Radiotherapy Physics“. In Practical Medical Physics, 155–202. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781315142425-6-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chung, Emma, und Justyna Janus. „Ultrasound Physics“. In Practical Medical Physics, 51–69. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781315142425-3-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Amestoy, William. „Radiation Physics“. In Review of Medical Dosimetry, 1–108. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13626-4_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tao, Chen, Zhang Ting, Wang Guang Chang, Zhou Ji Fang, Zhang Jian Wei und Liu Yu Hong. „Medical Physics Curriculum Reform“. In Lecture Notes in Electrical Engineering, 715–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24820-7_114.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Rajan, K. N. Govinda. „Basic Medical Radiation Physics“. In Radiation Safety in Radiation Oncology, 25–94. Boca Raton, FL: CRC Press, Taylor & Francis Group, [2017]: CRC Press, 2017. http://dx.doi.org/10.1201/9781315119656-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sprawls, Perry. „Medical Physics, an Introduction“. In Introduction to Medical Physics, 1–13. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429155758-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Chowdhury, Alimul. „Magnetic Resonance Imaging Physics“. In Practical Medical Physics, 25–49. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781315142425-2-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Schieck, Hans Paetz gen. „Medical Applications“. In Nuclear Physics with Polarized Particles, 161–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24226-7_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Medical physics":

1

Kralova, Eva. „ATTITUDES OF MEDICAL STUDENTS TOWARDS PHYSICS AND MEDICAL PHYSICS“. In 12th annual International Conference of Education, Research and Innovation. IATED, 2019. http://dx.doi.org/10.21125/iceri.2019.0799.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Trujillo Zamudio, Flavio E., María-Ester Brandan, Isabel Gamboa-deBuen, Gerardo Herrera-Corral und Luis A. Medina-Velázquez. „Preface: Medical Physics“. In MEDICAL PHYSICS: Twelfth Mexican Symposium on Medical Physics. AIP, 2012. http://dx.doi.org/10.1063/1.4764583.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Mower, Herbert W., und Hakeem M. Oluseyi. „Medical Physics Professional Societies“. In 007. AIP, 2008. http://dx.doi.org/10.1063/1.2905132.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Altuzarra, Antonio Cerdeira. „Semiconductor detectors for medical applications“. In MEDICAL PHYSICS. ASCE, 1998. http://dx.doi.org/10.1063/1.56380.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zárate-Morales, A., M. Rodrı́guez-Villafuerte, F. Martı́nez-Rodrı́guez und N. Arévila-Ceballos. „Determination of left ventricular mass through SPECT imaging“. In MEDICAL PHYSICS. ASCE, 1998. http://dx.doi.org/10.1063/1.56376.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wright, Steven M. „RF coil arrays in MRI“. In MEDICAL PHYSICS. ASCE, 1998. http://dx.doi.org/10.1063/1.56377.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ruiz, C., A. E. Buenfil, I. Gamboa-deBuen, M. Rodrı́guez-Villafuerte, P. Avilés, C. Olvera und M. E. Brandan. „A novel method to use radiochromic dye films to determine dose under proton irradiation“. In MEDICAL PHYSICS. ASCE, 1998. http://dx.doi.org/10.1063/1.56372.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Aranda, S., und H. Aranda-Espinoza. „Virus—Cell—Fusion“. In MEDICAL PHYSICS. ASCE, 1998. http://dx.doi.org/10.1063/1.56373.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Huerta, R., A. Hernández und J. J. Alvarado-Gil. „On the motility of living invertebrates The case of“. In MEDICAL PHYSICS. ASCE, 1998. http://dx.doi.org/10.1063/1.56374.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Mendoza-Alvarez, Julio G. „Biochips: A fruitful product of solid state physics and molecular biology“. In MEDICAL PHYSICS. ASCE, 1998. http://dx.doi.org/10.1063/1.56375.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Medical physics":

1

Herman, Michael, A. Harms, Kenneth Hogstrom, Eric Klein, Lawrence Reinstein, Lawrence Rothenberg, Brian Wichman et al. Alternative Clinical Medical Physics Training Pathways for Medical Physicists. AAPM, August 2008. http://dx.doi.org/10.37206/119.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Paliwal, Bhudatt R., James C. H. Chu, Paul M. DeLuca, Arnold Feldman, Ellen E. Grein, Donald E. Herbert, Edward F. Jackson et al. Academic Program Recommendations for Graduate Degrees in Medical Physics. AAPM, 2002. http://dx.doi.org/10.37206/79.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Halvorsen, Per H., Julie F. Dawson, Martin W. Fraser, Geoffrey S. Ibbott und Bruce R. Thomadsen. The Solo Practice of Medical Physics in Radiation Oncology. AAPM, 2003. http://dx.doi.org/10.37206/80.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Prisciandaro, Joann, Charles Willis, Jay Burmeister, Geoffrey Clarke, Rupak Das, Jacqueline Esthappan, Bruce Gerbi et al. Essentials and Guidelines for Clinical Medical Physics Residency Training Programs. AAPM, Oktober 2013. http://dx.doi.org/10.37206/149.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Jr., Paul M. DeLuca, F. H. Attix, Daniel A. Bassano, J. Larry Beach, L. Stephen Graham, David Gur, Gerda B. Krefft et al. Academic Program for Master of Science Degree in Medical Physics. AAPM, 1993. http://dx.doi.org/10.37206/43.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Deluca, Paul, Ellen Grein, Donald Herbert, Edward Jackson, Ervin Podgorsak, E. Russell Ritenour, Jennifer Smilowitz, George Starkschall und Frank Verhaegen. Academic Program Recommendations for Graduate Degrees in Medical Physics (2009). Chair Bhudatt Paliwal. American Association of Physicists in Medicine, April 2009. http://dx.doi.org/10.37206/197.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Sternick, Edward S., Richard G. Evans, E. Roblert Heitzman, James G. Kereiakes, Edwin C. McCullough, Richard L. Morin, J. Thomas Payne et al. Essentials and Guidelines for Hospital Based Medical Physics Residency Training Programs. AAPM, 1990. http://dx.doi.org/10.37206/35.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Lane, Richard G., Donna M. Stevens, John P. Gibbons, Lynn J. Verhey, Kenneth R. Hogstrom, Edward L. Chaney, Melissa C. Martin et al. Essentials and Guidelines for Hospital-Based Medical Physics Residency Training Programs. AAPM, 2006. http://dx.doi.org/10.37206/91.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hetzel, Fred W., Suresh M. Brahmavar, Qun Chen, Steven L. Jacques, Michael S. Patterson, Brian C. Wilson und Timothy C. Zhu. Photodynamic Therapy Dosimetry: A Task Group Report of the General Medical Physics Committee of the Science Council. AAPM, 2005. http://dx.doi.org/10.37206/89.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Gress, Dustin, David Jordan, Priscilla Butler, Jessica Clements, Kenneth Coleman, David Lloyd Goff, Melissa Martin et al. An Updated Description of the Professional Practice of Diagnostic and Imaging Medical Physics: The Report of AAPM Diagnostic Work and Workforce Study Subcommittee. AAPM, Mai 2017. http://dx.doi.org/10.37206/163.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie