Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Melanopsin“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Melanopsin" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Melanopsin"
Spitschan, Manuel, Andrew S. Bock, Jack Ryan, Giulia Frazzetta, David H. Brainard und Geoffrey K. Aguirre. „The human visual cortex response to melanopsin-directed stimulation is accompanied by a distinct perceptual experience“. Proceedings of the National Academy of Sciences 114, Nr. 46 (31.10.2017): 12291–96. http://dx.doi.org/10.1073/pnas.1711522114.
Der volle Inhalt der QuelleSomasundaram, Preethi, Glenn R. Wyrick, Diego Carlos Fernandez, Alireza Ghahari, Cindy M. Pinhal, Melissa Simmonds Richardson, Alan C. Rupp et al. „C-terminal phosphorylation regulates the kinetics of a subset of melanopsin-mediated behaviors in mice“. Proceedings of the National Academy of Sciences 114, Nr. 10 (21.02.2017): 2741–46. http://dx.doi.org/10.1073/pnas.1611893114.
Der volle Inhalt der QuelleWoelders, Tom, Thomas Leenheers, Marijke C. M. Gordijn, Roelof A. Hut, Domien G. M. Beersma und Emma J. Wams. „Melanopsin- and L-cone–induced pupil constriction is inhibited by S- and M-cones in humans“. Proceedings of the National Academy of Sciences 115, Nr. 4 (08.01.2018): 792–97. http://dx.doi.org/10.1073/pnas.1716281115.
Der volle Inhalt der QuelleMcGregor, K. M., C. Bécamel, P. Marin und R. Andrade. „Using melanopsin to study G protein signaling in cortical neurons“. Journal of Neurophysiology 116, Nr. 3 (01.09.2016): 1082–92. http://dx.doi.org/10.1152/jn.00406.2016.
Der volle Inhalt der QuelleBerman, SM, und RD Clear. „A practical metric for melanopic metrology“. Lighting Research & Technology 51, Nr. 8 (29.01.2019): 1178–91. http://dx.doi.org/10.1177/1477153518824147.
Der volle Inhalt der QuelleSOLLARS, PATRICIA J., CYNTHIA A. SMERASKI, JESSICA D. KAUFMAN, MALCOLM D. OGILVIE, IGNACIO PROVENCIO und GARY E. PICKARD. „Melanopsin and non-melanopsin expressing retinal ganglion cells innervate the hypothalamic suprachiasmatic nucleus“. Visual Neuroscience 20, Nr. 6 (November 2003): 601–10. http://dx.doi.org/10.1017/s0952523803206027.
Der volle Inhalt der QuelleVUGLER, ANTHONY A., MA'AYAN SEMO, ANNA JOSEPH und GLEN JEFFERY. „Survival and remodeling of melanopsin cells during retinal dystrophy“. Visual Neuroscience 25, Nr. 2 (März 2008): 125–38. http://dx.doi.org/10.1017/s0952523808080309.
Der volle Inhalt der QuelleLucas, Robert J., Annette E. Allen, Nina Milosavljevic, Riccardo Storchi und Tom Woelders. „Can We See with Melanopsin?“ Annual Review of Vision Science 6, Nr. 1 (15.09.2020): 453–68. http://dx.doi.org/10.1146/annurev-vision-030320-041239.
Der volle Inhalt der QuelleSEMO, MA'AYAN, MARTA MUÑOZ LLAMOSAS, RUSSELL G. FOSTER und GLEN JEFFERY. „Melanopsin (Opn4) positive cells in the cat retina are randomly distributed across the ganglion cell layer“. Visual Neuroscience 22, Nr. 1 (Januar 2005): 111–16. http://dx.doi.org/10.1017/s0952523805001069.
Der volle Inhalt der QuelleConus, Vincent, und Martial Geiser. „A Review of Silent Substitution Devices for Melanopsin Stimulation in Humans“. Photonics 7, Nr. 4 (30.11.2020): 121. http://dx.doi.org/10.3390/photonics7040121.
Der volle Inhalt der QuelleDissertationen zum Thema "Melanopsin"
Teikari, Petteri. „spectral modulation of melanopsin responses : role of melanopsin bistability in pupillary light reflex“. Phd thesis, Université Claude Bernard - Lyon I, 2012. http://tel.archives-ouvertes.fr/tel-00999326.
Der volle Inhalt der QuelleRamos, Bruno Cesar Ribeiro. „Fototransdução em células embrionárias ZEM-2S do peixe teleósteo Danio rerio“. Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/41/41135/tde-16012015-151748/.
Der volle Inhalt der QuelleMelanopsin was discovered in 1998 by Ignacio Provencio and colleagues in Xenopus leavis melanophores. Since its discovery, this photopigment has emerged as a possible candidate to mediate synchronization in vertebrates. In mammals the melanopsin is found in a subset of retinal ganglion cells, known as intrinsically photosensitive retinal ganglion cells (ipRGCs) and their role as the photopigment responsible for photoentrainment in mammals has already been established. Melanopsin is present in the retina of all vertebrate classes studied to date, nevertheless, its structure is more similar to invertebrate than to vertebrates opsins, suggesting that their phototransduction pathway occurs through the phosphoinositide pathway. This hypothesis has been confirmed by several studies in the literature. Later studies showed that melanopsin is encoded by two genes in non-mammalian vertebrates, Opn4m orthologous to mammalian and Opn4x orthologous to X. leavis, raising new questions about the functionality of this opsin. Our group has studied this photopigment in vertebrate peripheral tissues since 2001 and, in Xenopus laevis melanophores, we demonstrated that pigment granule dispersion occurs through photoactivation of melanopsin and triggering of phosphoinositide pathway. More recent studies have put melanopsin as a possible photoreceptor responsible for peripheral clocks entrainment in organisms like fish and amphibians. In this context, the ZEM-2S cell line of the teleost fish Danio rerio is a good model to study the mechanism of phototransduction in peripheral clocks. It has been previously demonstrated that this cell line is responsive to light stimuli, exhibiting a differential proliferation when submitted to different light/dark regimes and activating the expression of clock genes such as clock, per1 and cry1b, known to synchronize the biological rhythms to environmental photoperiod. Our immunocytochemistry experiments detected the presence of two proteins encoded by the melanopsin genes opn4m-1 and opn4m-2, and showed a significant difference in the distribution of proteins Opn4m-1 Opn4m-2. Quantitative PCR analyses showed that a 10-min blue light pulse is able to change the expression of the clock genes per1b, per2, cry1b and cry1a, and that this change occurred through the phosphoinositide cascade in embryonic ZEM-2S cells of D. rerio. In addition we showed that, to promote the change in clock gene expression, the phosphoinositide pathway interacts with other signaling pathways such as the nitric oxide (NO) and the mitogen-activated protein kinase (MAPK) pathways. These data suggest that melanopsin is a major candidate to mediate the photoentrainment in these cells, because taken together, the detection of melanopsin, stimulation within its absorption spectrum and activation of the phosphoinositide cascade, puts it ahead of other opsins, as the vertebrate ancient opsin (Va-opsin) and teleost multiple tissue opsin (Tmt-opsin), and other candidates, as photosensitive Crys and mechanisms of oxidative stress. In the course of this work, we could also define efficient methods for transfection of interference RNA and plasmidial DNA in ZEM-2S cells of D. rerio, which are fundamental tools in studies of gene expression in this model
Roecklein, Kathryn Ariel. „Melanopsin polymorphisms in seasonal affective disorder /“. Download the thesis in PDF, 2005. http://www.lrc.usuhs.mil/dissertations/pdf/Roecklein2005.pdf.
Der volle Inhalt der QuelleSantos, Luciane Rogéria dos. „Expressão gênica de receptor de melatonina (Mel1) e melanopsinas (Opn4x e Opn4m) em melanóforos de Xenopus laevis“. Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/41/41135/tde-09022011-104538/.
Der volle Inhalt der QuelleMany ectothermic vertebrates adjust their body color to mimic the environment, through the pigment migration within chromatophores, regulated by neural and / or hormonal systems. These changes in color help in camouflage, thermoregulation, social communication and behaviors such as sexual arousal, agressiveness and fear. However, chromatophores of several species respond directly to light. Studies about light response in melanophores of Xenopus laevis have led to the discovery of the photopigment melanopsin, an opsin that is present in the retina of all vertebrate groups, including man. Various hormones may regulate the process of color change in vertebrates, among them melatonin, hormone secreted by the pineal gland. This is the main organ responsible for the integration of the neuroendocrine system of vertebrates to the environment, translating directly or indirectly the photoperiod information into hormonal signal, thus coordinating physiological circadian rhythms with the environment. The objectives of this work were: to investigate whether the gene expression of melanopsins and melatonin receptor in melanophores of Xenopus laevis exhibited temporal variation under different light conditions; to verify whether gene expression of melanopsins and melatonin receptor in melanophores of Xenopus laevis could be modulated by melatonin. Our data show that melanopsins in melanophores of Xenopus laevis are synchronized to light-dark cycles, expressing a robust ultradian rhythm with a period of 16h for Opn4m and circadian rhythm with a period of 25h for Opn4x. Interestingly, the rhythm was only observed when the melanophores were maintained in 12L: 12D regime and medium change was performed during the fotophase of photoperiod. The constancy in the expression of melatonin receptor Mel1c, either under different light regimes, or under treatment by melatonin, suggesting that this gene is extremely stable, not being altered by exogenous stimulus, and may be considered a constitutive gene. Treatment with melatonin for 6h during the fotophase of the photoperiod, drastically inhibit the expression of Opn4x and Opn4m, and abolished the rhythm of both melanopsins. Our results indicate that melanophores of Xenopus laevis possess a functional clock and can be characterized as peripheral clocks, but they need the light-dark cycle associated with change of medium to exhibit their synchronization.
Moraes, Maria Nathália de Carvalho Magalhães. „Efeito da endotelina sobre a expressão gênica das melanopsinas (Opn4x e Opn4m) e do receptor de endotelina, subtipo ETc, em melanóforo de Xenopus laevis“. Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/41/41135/tde-18022011-104223/.
Der volle Inhalt der QuelleThe biological clocks are critical for synchronizing the behavior of organisms to changes in photoperiod. All rhythmic changes are crucial to the survival of the species since they provide for internal adjustments to coincide with the phase of the cycle most favorable. Many of these biological rhythms are clearly associated with the light-dark cycle, of major importance for species that have some type of photosensitive pigment. Melanophores of Xenopus laevis are photosensitive, responding to light with dispersion of melanin granules, due to the presence of two melanopsins, Opn4x and Opn4m. The pigment cells of ectothermic vertebrates respond with pigment migration to a variety of agents including the endothelins. In teleost fish, ETs induce pigment aggregation in melanophores, whereas in amphibians, ET-3 induces the dispersion of pigment granules in melanophores of Xenopus laevis and Rana catesbeiana, by activation of ETc. We proposed to determine the temporal pattern of gene expression of the ETc receptor and melanopsins in dermal melanophores of X. laevis in culture as well as the effects of endothelin-3 on the temporal expression of the 3 genes. Using quantitative PCR, we demonstrated that 12L: 12D regimen, combined with medium changes, as well as the treatment with 10-9 and 10-8M endothelin-3, was able to synchronize the expression of Opn4x and Opn4m. However, ETc receptor seems not to be synchronized by light-dark cycle, or hormone treatment. Depending on the dose and the ZT, ET-3 may promote an increase or inhibition of gene expression of Opn4x, Opn4m and ETc, indicating a dose-dependent modulatory effect. In addition, endothelin-3 may also act as a synchronizing agent of the melanopsins transcripts.
Hough, Katherine Ann. „Photodispersion and melanopsin expression in Xenopus laevis melanophores“. Thesis, King's College London (University of London), 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.416960.
Der volle Inhalt der QuelleDey, Ashim. „Melanopsin photoreceptor contributions to brightness perception and photophobia“. Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/205723/1/Ashim_Dey_Thesis.pdf.
Der volle Inhalt der QuelleVachtsevanos, Athanasios. „Probing the molecular basis of melanopsin induced light sensitivity“. Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:631deeeb-90c0-4e90-b24e-f03e1b318d8b.
Der volle Inhalt der QuelleRodgers, Jessica. „Functional characterisation of key residues in the photopigment melanopsin“. Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:d1184150-9b61-4cc9-94ad-2cc13a3d21ce.
Der volle Inhalt der QuellePapamichael, Christiana. „Non-visual light responses in humans : melanopsin and cone involvement“. Thesis, University of York, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.583379.
Der volle Inhalt der QuelleBücher zum Thema "Melanopsin"
Lai, Han-Lin. Estimation of tag loss rate of black rockfish (Sebastes melanops) off Washington coast with a review of double tagging models. Olympia, WA: State of Washington, Dept. of Fisheries, 1991.
Den vollen Inhalt der Quelle findenJoyce, Daniel S., Kevin W. Houser, Stuart N. Peirson, Jamie M. Zeitzer und Andrew J. Zele. Melanopsin Vision: Sensation and Perception Through Intrinsically Photosensitive Retinal Ganglion Cells. Cambridge University Press, 2022.
Den vollen Inhalt der Quelle findenJoyce, Daniel S., Kevin W. Houser, Stuart N. Peirson, Jamie M. Zeitzer und Andrew J. Zele. Melanopsin Vision: Sensation and Perception Through Intrinsically Photosensitive Retinal Ganglion Cells. Cambridge University Press, 2023.
Den vollen Inhalt der Quelle findenScudder, Samuel Hubbard. Revision of the Orthopteran Group Melanopli: With Special Reference to North American Forms; Volume 20. Creative Media Partners, LLC, 2018.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Melanopsin"
Lucas, Robert. „Melanopsin Retinal Ganglion Cells“. In Encyclopedia of Color Science and Technology, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27851-8_275-1.
Der volle Inhalt der QuelleLucas, Robert. „Melanopsin Retinal Ganglion Cells“. In Encyclopedia of Color Science and Technology, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-642-27851-8_275-2.
Der volle Inhalt der QuelleLucas, Robert. „Melanopsin Retinal Ganglion Cells“. In Encyclopedia of Color Science and Technology, 901–3. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4419-8071-7_275.
Der volle Inhalt der QuelleTsujimura, Sei-ichi, und Yoshika Takahashi. „Melanopsin Contributions to Human Brightness Perception“. In Encyclopedia of Color Science and Technology, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-642-27851-8_422-1.
Der volle Inhalt der QuelleBrown, R. Lane, Erika Camacho, Evan G. Cameron, Christina Hamlet, Kathleen A. Hoffman, Hye-Won Kang, Phyllis R. Robinson, Katherine S. Williams und Glenn R. Wyrick. „A Stochastic Model of the Melanopsin Phototransduction Cascade“. In The IMA Volumes in Mathematics and its Applications, 175–95. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2782-1_8.
Der volle Inhalt der QuelleDavies, Wayne I. L., Russell G. Foster und Mark W. Hankins. „The Evolution and Function of Melanopsin in Craniates“. In Evolution of Visual and Non-visual Pigments, 23–63. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-1-4614-4355-1_2.
Der volle Inhalt der QuelleDo, Michael Tri Hoang. „Patch-Clamp Electrophysiological Analysis of Murine Melanopsin Neurons“. In Circadian Clocks, 121–50. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2577-4_6.
Der volle Inhalt der QuelleMederos, Sara, Candela González-Arias und Gertrudis Perea. „Melanopsin for Time-Controlling Activation of Astrocyte–Neuron Networks“. In Methods in Molecular Biology, 53–69. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0755-8_3.
Der volle Inhalt der QuelleProvencio, Ignacio. „The Role of Melanopsin and Other Opsins in Circadian Clock Resetting“. In Biologic Effects of Light 2001, 451–59. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0937-0_44.
Der volle Inhalt der QuelleLee, Seul Ki, und Tiffany M. Schmidt. „Morphological Identification of Melanopsin-Expressing Retinal Ganglion Cell Subtypes in Mice“. In Methods in Molecular Biology, 275–87. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7720-8_19.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Melanopsin"
Geiser, Martial, Frederic Truffer, Chirojean Balachandran, Aki Kawasaki und Sergiu Agrici. „Device for silent substitution excitation of melanopsin for human eye“. In Ophthalmic Technologies XXIX, herausgegeben von Fabrice Manns, Per G. Söderberg und Arthur Ho. SPIE, 2019. http://dx.doi.org/10.1117/12.2511654.
Der volle Inhalt der QuelleYamashita, Shuhei, Tomoe Uehara, Minako Matsuo, Yo Kikuchi und Rika Numano. „Melanopsin resets circadian rhythms in cells by inducing clock gene Period1“. In THE IRAGO CONFERENCE 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4866616.
Der volle Inhalt der QuelleAdhikari, Prakash, Andrew J. Zele, Dingcai Cao, Jan Kremers und Beatrix Feigl. „The Influence of Melanopsin Activation on the Cone-mediated Photopic White Noise Electroretinogram (wnERG) in Humans“. In Frontiers in Optics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/fio.2018.jtu3a.109.
Der volle Inhalt der QuellePatrick, Fluckiger, Schmid Jessica, Evequoz Gilles, Bressy Pierre und Geiser Martial. „Homogeneous light stimulation of melanopsin and cones with a Maxwellian view device for the human eye“. In 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2021. http://dx.doi.org/10.1109/i2mtc50364.2021.9459940.
Der volle Inhalt der QuelleSchilling, Tim, Mojtaba Soltanlou, Yeshwanth Seshadri, Hans-Christoph Nuerk und Hamed Bahmani. „Blue Light and Melanopsin Contribution to the Pupil Constriction in the Blind-spot, Parafovea and Periphery“. In 13th International Conference on Health Informatics. SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0008972404820489.
Der volle Inhalt der QuelleAllen, Annette E., Franck P. Martial und Robert J. Lucas. „Applying the discovery of melanopsin photoreceptors in the human retina to enhancing the performance of visual displays“. In Advances in Display Technologies IX, herausgegeben von Qiong-Hua Wang, Tae-Hoon Yoon und Jiun-Haw Lee. SPIE, 2019. http://dx.doi.org/10.1117/12.2508422.
Der volle Inhalt der QuellePrice, Luke. „BLH, LEDS AND CCT EQUIVALENT MELANOPIC ILLUMINANCES“. In CIE 2017 Midterm Meetings and Conference on Smarter Lighting for Better Life. International Commission on Illumination, CIE, 2018. http://dx.doi.org/10.25039/x44.2017.pp31.
Der volle Inhalt der QuelleParker, S. J., P. S. Rankin, J. M. Olson und R. W. Hannah. „Movement patterns of black rockfish (Sebastes melanops) in Oregon coastal waters“. In Biology, Assessment, and Management of North Pacific Rockfishes. Alaska Sea Grant, University of Alaska Fairbanks, 2007. http://dx.doi.org/10.4027/bamnpr.2007.03.
Der volle Inhalt der QuelleKruisselbrink, T. W., R. Dangol und E. J. van Loenen. „HDR IMAGING FOR LUMINANCE AND MELANOPIC RADIANCE: CAMERAS AND SPECTRAL POWER DISTRIBUTIONSRACT TITLE“. In CIE Tutorials on Colorimetry and Visual Appearance. International Commission on Illumination (CIE), 2020. http://dx.doi.org/10.25039/x47.2020.pp07.
Der volle Inhalt der QuelleDurmus, Dorukalp. „Impact of Surface Reflectance on Spectral Optimization for Melanopic Illuminance and Energy Efficiency“. In Optical Devices and Materials for Solar Energy and Solid-state Lighting. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/pvled.2019.pt2c.5.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Melanopsin"
Roecklein, Kathryn A. Haplotype Analysis of the Melanopsin Gene in Seasonal Affective Disorder and Controls. Fort Belvoir, VA: Defense Technical Information Center, Mai 2007. http://dx.doi.org/10.21236/ad1014058.
Der volle Inhalt der Quelle