Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Metal oxide semiconductors, Complimentary.

Zeitschriftenartikel zum Thema „Metal oxide semiconductors, Complimentary“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Metal oxide semiconductors, Complimentary" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Moreno, Mauricio. „Complimentary metal-oxide semiconductor linear photosensor array for 3-D reconstruction applications“. Optical Engineering 43, Nr. 10 (01.10.2004): 2448. http://dx.doi.org/10.1117/1.1786939.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Serov, Alexander, Wiendelt Steenbergen und Frits de Mul. „Laser Doppler perfusion imaging with a complimentary metal oxide semiconductor image sensor“. Optics Letters 27, Nr. 5 (01.03.2002): 300. http://dx.doi.org/10.1364/ol.27.000300.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Martin, Lucy C., David T. Clark, Ewan P. Ramsay, A. E. Murphy, Robin F. Thompson, Dave A. Smith, R. A. R. Young, Jennifer D. Cormack, Nicolas G. Wright und Alton B. Horsfall. „Comparison of Oxide Quality for Monolithically Fabricated SiC CMOS Structures“. Materials Science Forum 717-720 (Mai 2012): 773–76. http://dx.doi.org/10.4028/www.scientific.net/msf.717-720.773.

Der volle Inhalt der Quelle
Annotation:
The recent development of silicon carbide complimentary metal-oxide-semiconductor (CMOS) is a key enabling step in the realisation of low power circuitry for high temperature applications, such as aerospace and well logging. This paper describes investigations into the properties of the gate dielectric as part of the development of the technology to realize monolithic fabrication of both n and p channel devices. A comparison of the oxide quality of the silicon carbide CMOS transistors is performed to examine the feasibility of this technology for high temperature circuitry.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lakestani, Fereydoun. „Full-field optical coherence tomography with a complimentary metal-oxide semiconductor digital signal processor camera“. Optical Engineering 45, Nr. 1 (01.01.2006): 015601. http://dx.doi.org/10.1117/1.2158968.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Sederberg, S., V. Van und A. Y. Elezzabi. „Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor- and photonic-compatible platform“. Applied Physics Letters 96, Nr. 12 (22.03.2010): 121101. http://dx.doi.org/10.1063/1.3365020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kim, Tae-Hoon, Cihan Yilmaz, Sivasubramanian Somu und Ahmed Busnaina. „3-D Perpendicular Assembly of Single Walled Carbon Nanotubes for Complimentary Metal Oxide Semiconductor Interconnects“. Journal of Nanoscience and Nanotechnology 14, Nr. 5 (01.05.2014): 3673–76. http://dx.doi.org/10.1166/jnn.2014.7942.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Martin, Lucy Claire, David T. Clark, E. P. Ramsay, A. E. Murphy, R. F. Thompson, Dave A. Smith, R. A. R. Young, Jennifer D. Cormack, Nicholas G. Wright und Alton B. Horsfall. „Charge Pumping Analysis of Monolithically Fabricated 4H-SiC CMOS Structures“. Materials Science Forum 740-742 (Januar 2013): 891–94. http://dx.doi.org/10.4028/www.scientific.net/msf.740-742.891.

Der volle Inhalt der Quelle
Annotation:
The development of silicon carbide complimentary metal-oxide-semiconductor (CMOS) is a key-enabling step in the realisation of low power circuitry for high-temperature applications. This paper describes investigations using the charge pumping technique into the properties of the gate dielectric interface as part of the development of the technology to realise monolithic fabrication of both n and p channel devices. A comparison of the charge pumping technique and the Hill-Coleman and Terman methods is also carried out to explore the feasibility of the technique.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Endoh, Tetsuo, Fumitaka Iga, Shoji Ikeda, Katsuya Miura, Jun Hayakawa, Masashi Kamiyanagi, Haruhiro Hasegawa, Takahiro Hanyu und Hideo Ohno. „The Performance of Magnetic Tunnel Junction Integrated on the Back-End Metal Line of Complimentary Metal–Oxide–Semiconductor Circuits“. Japanese Journal of Applied Physics 49, Nr. 4 (20.04.2010): 04DM06. http://dx.doi.org/10.1143/jjap.49.04dm06.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Fritze, M., J. Burns, P. W. Wyatt, C. K. Chen, P. Gouker, C. L. Chen, C. Keast et al. „Sub-100 nm silicon on insulator complimentary metal–oxide semiconductor transistors by deep ultraviolet optical lithography“. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 18, Nr. 6 (2000): 2886. http://dx.doi.org/10.1116/1.1314387.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Rishton, S. A. „New complimentary metal–oxide semiconductor technology with self-aligned Schottky source/drain and low-resistance T gates“. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 15, Nr. 6 (November 1997): 2795. http://dx.doi.org/10.1116/1.589730.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Lin, S., H. Cui, L. Wu, W. Wang und X. Sun. „Design of broadside-coupled parallel line millimetre-wave filters by standard 0.18-μm complimentary metal oxide semiconductor technology“. IET Microwaves, Antennas & Propagation 6, Nr. 1 (2012): 72. http://dx.doi.org/10.1049/iet-map.2011.0024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Morifuji, Eiji. „Impact of Mechanical Stress on Hot-Carrier Lifetime and Time-Dependent Dielectric Breakdown in Downscaled Complimentary Metal–Oxide–Semiconductor“. Japanese Journal of Applied Physics 48, Nr. 2 (20.02.2009): 021206. http://dx.doi.org/10.1143/jjap.48.021206.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Ayón, A. A., K. Ishihara, R. A. Braff, H. H. Sawin und M. A. Schmidt. „Application of the footing effect in the micromachining of self-aligned, free-standing, complimentary metal–oxide–semiconductor compatible structures“. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 17, Nr. 4 (Juli 1999): 2274–79. http://dx.doi.org/10.1116/1.581760.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Uraoka, Yukiharu, Hiroshi Yano, Tomoaki Hatayama und Takashi Fuyuki. „Comprehensive Study on Reliability of Low-Temperature Poly-Si Thin-Film Transistors under Dynamic Complimentary Metal-Oxide Semiconductor Operations“. Japanese Journal of Applied Physics 41, Part 1, No. 4B (30.04.2002): 2414–18. http://dx.doi.org/10.1143/jjap.41.2414.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Chang, J. F., und Y. S. Lin. „DC∼10.5 GHz complimentary metal oxide semiconductor distributed amplifier with RC gate terminal network for ultra-wideband pulse radio systems“. IET Microwaves, Antennas & Propagation 6, Nr. 2 (2012): 127. http://dx.doi.org/10.1049/iet-map.2011.0231.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Li, V. Z.-Q., M. R. Mirabedini, R. T. Kuehn, J. J. Wortman, M. C. Öztürk, D. Batchelor, K. Christensen und D. M. Maher. „Rapid thermal chemical vapor deposition ofin situboron-doped polycrystalline silicon-germanium films on silicon dioxide for complimentary-metal-oxide-semiconductor applications“. Applied Physics Letters 71, Nr. 23 (08.12.1997): 3388–90. http://dx.doi.org/10.1063/1.120344.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Parikh, Pritesh, Corey Senowitz, Don Lyons, Isabelle Martin, Ty J. Prosa, Michael DiBattista, Arun Devaraj und Y. Shirley Meng. „Three-Dimensional Nanoscale Mapping of State-of-the-Art Field-Effect Transistors (FinFETs)“. Microscopy and Microanalysis 23, Nr. 5 (31.08.2017): 916–25. http://dx.doi.org/10.1017/s1431927617012491.

Der volle Inhalt der Quelle
Annotation:
AbstractThe semiconductor industry has seen tremendous progress over the last few decades with continuous reduction in transistor size to improve device performance. Miniaturization of devices has led to changes in the dopants and dielectric layers incorporated. As the gradual shift from two-dimensional metal-oxide semiconductor field-effect transistor to three-dimensional (3D) field-effect transistors (finFETs) occurred, it has become imperative to understand compositional variability with nanoscale spatial resolution. Compositional changes can affect device performance primarily through fluctuations in threshold voltage and channel current density. Traditional techniques such as scanning electron microscope and focused ion beam no longer provide the required resolution to probe the physical structure and chemical composition of individual fins. Hence advanced multimodal characterization approaches are required to better understand electronic devices. Herein, we report the study of 14 nm commercial finFETs using atom probe tomography (APT) and scanning transmission electron microscopy–energy-dispersive X-ray spectroscopy (STEM-EDS). Complimentary compositional maps were obtained using both techniques with analysis of the gate dielectrics and silicon fin. APT additionally provided 3D information and allowed analysis of the distribution of low atomic number dopant elements (e.g., boron), which are elusive when using STEM-EDS.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Murata, M., K. Yamauchi, H. Kojima, A. Yokoyama, T. Inoue und T. Iwamori. „Parasitic Channel Induced by Spin‐On‐Glass in a Double‐Level Metallization Complimentary Metal Oxide Semiconductor Process: Its Formation and Method of Suppression“. Journal of The Electrochemical Society 140, Nr. 8 (01.08.1993): 2346–56. http://dx.doi.org/10.1149/1.2220821.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Liebmann, L. „Application of proximity synchrotron orbital radiation lithography and deep ultraviolet phase-shifted-mask lithography to sub-quarter-micron complimentary metal oxide semiconductor devices“. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 12, Nr. 6 (November 1994): 3943. http://dx.doi.org/10.1116/1.587579.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Ramesh, Tatapudi, Gurugubelli Upendra, Bandaru Sravani Krishna, Sahithi Dathar, Priyankesh Sinha, Raghavendra M.N, Myla Swathi und K. Roja Vara Lakshmi. „A comparative study to diagnose the accuracy of E-speed film, complimentary metal oxide semiconductor and storage phosphor systems in the detection of proximal caries: An in vitro study“. International Journal of Dental Research 4, Nr. 1 (24.01.2016): 1. http://dx.doi.org/10.14419/ijdr.v4i1.5717.

Der volle Inhalt der Quelle
Annotation:
<p><strong>Background:</strong> Dental caries is one of the most commonly encountered conditions in clinical dentistry and these lesions remain undetected when confined to the vicinity of inter-proximal surfaces. Radiography plays a key role in the detection of inter-proximal caries especially in tight contacts.</p><p><strong>Objectives:</strong> The purpose of this study was to compare the diagnostic accuracy of E-speed film, complementary metal oxide semiconductors (CMOS) and storage phosphor systems (PSP) in the detection of proximal caries of the posterior teeth.</p><p><strong>Methods:</strong> Conventional films, CMOS and PSP images were used in detecting proximal caries on mesial and distal surfaces of 63 teeth (126 surfaces). Interpretation of all digital and conventional radiographs were performed and reanalyzed by four observers. The collected data was subjected to statistical analysis using chi square test, weighed kappa statistics and spearman rank correlation coefficient.</p><p><strong>Results:</strong> The PSP images showed more accurate results in identifying normal tooth, enamel caries, dentinal caries and deep dental caries and kappa statistics had represented almost perfect reading of 0.8 – 0.9 for PSP images whereas CMOS images showed substantial reading of 0.6 – 0.7, and for IOPA images it showed moderate reading of 0.5 – 0.6, which stated that the higher inter-observer agreement was obtained for PSP images when compared with images taken by IOPA and CMOS. The intra-observer reliability by kappa statistics had shown highly significant value (0.82) in the present study.</p><p><strong>Conclusion:</strong> Conventional films, CMOS and PSP images had shown almost appropriate results in the detection of proximal caries but PSP receptors were better in disclosing the details more accurately in terms of delineating the actual extent of the lesion pertaining to their high resolution capacity and further their flexibility made them easier during handling the radiograph, when compared with that of rigid CMOS receptors.</p>
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Grados, Hugo Ricardo Jiménez, Leandro T. Manera, Ricardo Wada, José Alexandre Diniz, Ioshiaki Doi, Peter Jurgen Tatsch, Hugo Enrique Figueroa und Jacobus W. Swart. „DC Improvements and Low-Frequency 1/fNoise Characteristics of Complimentary Metal–Oxide–Semiconductor Transistors with a Single n+-Doped Polycrystalline Si/SiGe Gate Stack“. Japanese Journal of Applied Physics 49, Nr. 4 (20.04.2010): 04DC04. http://dx.doi.org/10.1143/jjap.49.04dc04.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Smith, A., Qi Li, Agin Vyas, Mohammad Haque, Kejian Wang, Andres Velasco, Xiaoyan Zhang et al. „Carbon-Based Electrode Materials for Microsupercapacitors in Self-Powering Sensor Networks: Present and Future Development“. Sensors 19, Nr. 19 (29.09.2019): 4231. http://dx.doi.org/10.3390/s19194231.

Der volle Inhalt der Quelle
Annotation:
There is an urgent need to fulfill future energy demands for micro and nanoelectronics. This work outlines a number of important design features for carbon-based microsupercapacitors, which enhance both their performance and integration potential and are critical for complimentary metal oxide semiconductor (CMOS) compatibility. Based on these design features, we present CMOS-compatible, graphene-based microsupercapacitors that can be integrated at the back end of the line of the integrated circuit fabrication. Electrode materials and their interfaces play a crucial role for the device characteristics. As such, different carbon-based materials are discussed and the importance of careful design of current collector/electrode interfaces is emphasized. Electrode adhesion is an important factor to improve device performance and uniformity. Additionally, doping of the electrodes can greatly improve the energy density of the devices. As microsupercapacitors are engineered for targeted applications, device scaling is critically important, and we present the first steps toward general scaling trends. Last, we outline a potential future integration scheme for a complete microsystem on a chip, containing sensors, logic, power generation, power management, and power storage. Such a system would be self-powering.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Du, Yankang, und Shuming Chen. „A Novel Layout-Based Single Event Transient Injection Approach to Evaluate the Soft Error Rate of Large Combinational Circuits in Complimentary Metal-Oxide-Semiconductor Bulk Technology“. IEEE Transactions on Reliability 65, Nr. 1 (März 2016): 248–55. http://dx.doi.org/10.1109/tr.2015.2427372.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Pabo, Eric F., Garrett Oakes, Ron Miller, Paul Lindner, Gerald Kreindl, Thorsten Matthias, V. Dragoi und M. Wimplinger. „Enabling Wafer Level Processes for CIS Manufacturing“. Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2010, DPC (01.01.2010): 002393–413. http://dx.doi.org/10.4071/2010dpc-tha36.

Der volle Inhalt der Quelle
Annotation:
CMOS (Complimentary Metal Oxide Semiconductor) Image Sensors have become ubiquitous, appearing in cars, cell phones, toys and many other devices used in every day life. The primary reason for this increasing presence of CIS (CMOS Image Sensors) is the continual improvement of the performance to cost ratio of these devices. The drivers behind this are the advancements of CMOS image sensor technology such as improved signal to noise ratio as well as advancements in wafer level processing technology related to 3D packaging. Numerous process developments related to both the electrical and optical aspects of 3D packaging of CIS that have enabled this climb up the performance vs. cost curve will be reviewed in this paper with particular attention to:(1) Lens molding – The ability to mold lenses, both spherical and aspherical at the wafer level as well as make full size master stamps from partial masters for lens molding. These lenses can be molded on both sides of a wafer and the lenses aligned to each other;(2) Aligned wafer bonding for optical interconnects consisting of lens stacks and CIS wafer, to allow the thinning of a CIS for BSI (back side illumination), and for electrical interconnects. Together these processes allow the heterogeneous integration of optical and electrical elements at the wafer level and advance the CIS up the performance vs. cost curve.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Adhikari, Sangeeta, und Debasish Sarkar. „Metal oxide semiconductors for dye degradation“. Materials Research Bulletin 72 (Dezember 2015): 220–28. http://dx.doi.org/10.1016/j.materresbull.2015.08.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Kiriakidis, George, und Vassilios Binas. „Metal oxide semiconductors as visible light photocatalysts“. Journal of the Korean Physical Society 65, Nr. 3 (August 2014): 297–302. http://dx.doi.org/10.3938/jkps.65.297.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Toriumi, Akira. „0.1μm complementary metal–oxide–semiconductors and beyond“. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 14, Nr. 6 (November 1996): 4020. http://dx.doi.org/10.1116/1.588635.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Saha, H., und C. Chaudhuri. „Complementary Metal Oxide Semiconductors Microelectromechanical Systems Integration“. Defence Science Journal 59, Nr. 6 (24.11.2009): 557–67. http://dx.doi.org/10.14429/dsj.59.1560.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Anta, Juan A. „Electron transport in nanostructured metal-oxide semiconductors“. Current Opinion in Colloid & Interface Science 17, Nr. 3 (Juni 2012): 124–31. http://dx.doi.org/10.1016/j.cocis.2012.02.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Tutov, E. A., S. V. Ryabtsev, E. E. Tutov und E. N. Bormontov. „Silicon MOS structures with nonstoichiometric metal-oxide semiconductors“. Technical Physics 51, Nr. 12 (Dezember 2006): 1604–7. http://dx.doi.org/10.1134/s1063784206120097.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

CAROTTA, M., V. GUIDI, G. MARTINELLI, M. NAGLIATI, D. PUZZOVIO und D. VECCHI. „Sensing of volatile alkanes by metal-oxide semiconductors“. Sensors and Actuators B: Chemical 130, Nr. 1 (14.03.2008): 497–501. http://dx.doi.org/10.1016/j.snb.2007.09.053.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Hossein-Babaei, Faramarz, Saeed Masoumi und Amirreza Noori. „Seebeck voltage measurement in undoped metal oxide semiconductors“. Measurement Science and Technology 28, Nr. 11 (12.10.2017): 115002. http://dx.doi.org/10.1088/1361-6501/aa82a4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Hamers, Robert J., Scott A. Chambers, Paul E. Evans, Ryan Franking, Zachary Gerbec, Padma Gopalan, Heesuk Kim et al. „Molecular and biomolecular interfaces to metal oxide semiconductors“. physica status solidi (c) 7, Nr. 2 (Februar 2010): 200–205. http://dx.doi.org/10.1002/pssc.200982472.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Zhou, Xinran, Xiaowei Cheng, Yongheng Zhu, Ahmed A. Elzatahry, Abdulaziz Alghamdi, Yonghui Deng und Dongyuan Zhao. „Ordered porous metal oxide semiconductors for gas sensing“. Chinese Chemical Letters 29, Nr. 3 (März 2018): 405–16. http://dx.doi.org/10.1016/j.cclet.2017.06.021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Pandit, Bhishma, und Jaehee Cho. „AlGaN Ultraviolet Metal–Semiconductor–Metal Photodetectors with Reduced Graphene Oxide Contacts“. Applied Sciences 8, Nr. 11 (01.11.2018): 2098. http://dx.doi.org/10.3390/app8112098.

Der volle Inhalt der Quelle
Annotation:
AlGaN semiconductors are promising materials in the field of ultraviolet (UV) detection. We fabricated AlGaN/GaN UV metal–semiconductor–metal (MSM) photodiodes with two back-to-back interdigitated finger electrodes comprising reduced graphene oxide (rGO). The rGO showed high transparency below the wavelength of 380 nm, which is necessary for a visible-blind photodetector, and showed outstanding Schottky behavior on AlGaN. As the photocurrent, dark current, photoresponsivity, detectivity, and cut-off wavelength were investigated with the rGO/AlGaN MSM photodiodes with various Al mole fractions, systematic variations in the device characteristics with the Al mole fraction were confirmed, proving the potential utility of the device architecture combining two-dimensional materials, rGO, and nitride semiconductors.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Wang, Yucheng, Yuming Zhang, Tiqiang Pang, Jie Xu, Ziyang Hu, Yuejin Zhu, Xiaoyan Tang, Suzhen Luan und Renxu Jia. „Ionic behavior of organic–inorganic metal halide perovskite based metal-oxide-semiconductor capacitors“. Physical Chemistry Chemical Physics 19, Nr. 20 (2017): 13002–9. http://dx.doi.org/10.1039/c7cp01799e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Biswas, Somnath, Jakub Husek, Stephen Londo und L. Robert Baker. „Highly Localized Charge Transfer Excitons in Metal Oxide Semiconductors“. Nano Letters 18, Nr. 2 (30.01.2018): 1228–33. http://dx.doi.org/10.1021/acs.nanolett.7b04818.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Rim, You Seung, Huajun Chen, Bowen Zhu, Sang-Hoon Bae, Shuanglin Zhu, Philip Jwo Li, Isaac Caleb Wang und Yang Yang. „Interface Engineering of Metal Oxide Semiconductors for Biosensing Applications“. Advanced Materials Interfaces 4, Nr. 10 (27.02.2017): 1700020. http://dx.doi.org/10.1002/admi.201700020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Xu, Kang, Yi Wang, Yuda Zhao und Yang Chai. „Modulation doping of transition metal dichalcogenide/oxide heterostructures“. Journal of Materials Chemistry C 5, Nr. 2 (2017): 376–81. http://dx.doi.org/10.1039/c6tc04640a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Ohkubo, S., Y. Ashida, T. Utsumi, K. Hongo und G. Nogami. „The Role of Metal Hydrides in Electrode Reactions on Metal Oxide Semiconductors“. Journal of The Electrochemical Society 143, Nr. 10 (01.10.1996): 3273–78. http://dx.doi.org/10.1149/1.1837197.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Wickramasinghe, Thushan E., Gregory Jensen, Ruhi Thorat, Miles Lindquist, Shrouq H. Aleithan und Eric Stinaff. „Complementary growth of 2D transition metal dichalcogenide semiconductors on metal oxide interfaces“. Applied Physics Letters 117, Nr. 21 (23.11.2020): 213104. http://dx.doi.org/10.1063/5.0027225.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Chen, Y. L., G. L. Liou, H. H. Hsu, P. C. Chen, Z. W. Zheng, Y. H. Wu, C. H. Cheng, C. H. Liu und L. H. Chung. „Low-Voltage Metal-Oxide Thin Film Transistors Using P-Type Tin-Oxide Semiconductors“. Journal of Nanoscience and Nanotechnology 19, Nr. 9 (01.09.2019): 5619–23. http://dx.doi.org/10.1166/jnn.2019.16563.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Chen, Huajun, You Seung Rim, Isaac Caleb Wang, Chao Li, Bowen Zhu, Mo Sun, Mark S. Goorsky, Ximin He und Yang Yang. „Quasi-Two-Dimensional Metal Oxide Semiconductors Based Ultrasensitive Potentiometric Biosensors“. ACS Nano 11, Nr. 5 (26.04.2017): 4710–18. http://dx.doi.org/10.1021/acsnano.7b00628.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Braginsky, L. „Light absorption at the interface of transition-metal oxide semiconductors“. Solar Energy Materials and Solar Cells 64, Nr. 1 (01.09.2000): 15–27. http://dx.doi.org/10.1016/s0927-0248(00)00038-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Srivastava, S. K., P. Magudapathy, P. Gangopadhyay, S. Amirthapandian, Santanu Bera und A. Das. „Ag nanoparticles in compound metal oxide semiconductors: Syntheses and characterizations“. Thin Solid Films 681 (Juli 2019): 86–92. http://dx.doi.org/10.1016/j.tsf.2019.04.039.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Thomas, Stuart R., Pichaya Pattanasattayavong und Thomas D. Anthopoulos. „Solution-processable metal oxide semiconductors for thin-film transistor applications“. Chemical Society Reviews 42, Nr. 16 (2013): 6910. http://dx.doi.org/10.1039/c3cs35402d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Janesick, James. „Lux transfer: Complementary metal oxide semiconductors versus charge-coupled devices“. Optical Engineering 41, Nr. 6 (01.06.2002): 1203. http://dx.doi.org/10.1117/1.1476692.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Ji, Haocheng, Wen Zeng und Yanqiong Li. „Gas sensing mechanisms of metal oxide semiconductors: a focus review“. Nanoscale 11, Nr. 47 (2019): 22664–84. http://dx.doi.org/10.1039/c9nr07699a.

Der volle Inhalt der Quelle
Annotation:
This review organizes and introduces several common gas sensing mechanisms of metal oxide semiconductors in detail and classifies them into two categories. The scope and relationship of these mechanisms are clarified.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Ho, Dongil, Hyewon Jeong, Sunwoo Choi und Choongik Kim. „Organic materials as a passivation layer for metal oxide semiconductors“. Journal of Materials Chemistry C 8, Nr. 43 (2020): 14983–95. http://dx.doi.org/10.1039/d0tc02379e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Kim, Hojoong, und Jang-Yeon Kwon. „Enzyme immobilization on metal oxide semiconductors exploiting amine functionalized layer“. RSC Advances 7, Nr. 32 (2017): 19656–61. http://dx.doi.org/10.1039/c7ra01615h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie