Auswahl der wissenschaftlichen Literatur zum Thema „METAMATERIAL ABSORBER“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "METAMATERIAL ABSORBER" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "METAMATERIAL ABSORBER"

1

ZHOU, Zhiling, Sibo HUANG, Qian CHENG, Xu WANG, Jie ZHU, and Yong LI. "Broadband acoustic metamaterial absorber." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 270, no. 10 (2024): 1316–22. http://dx.doi.org/10.3397/in_2024_2881.

Der volle Inhalt der Quelle
Annotation:
Constrained by the causality nature, it is a challenge to achieve low-frequency broadband efficient absorption via passive materials. By coupling local resonances as many as possible, broadband metamaterial absorbers can be realized. In this scenario, the coupling effect is crucial for improving the absorption efficiency. Here, we demonstrate a kind of acoustic metamaterial absorber capable of high-efficiency broadband absorption by optimizing the non-local coupling effect. Cascade neck-embedded Helmholtz resonator is designed as the subunit of the metamaterial absorber. By coupling 36 subunit
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tran, Van Huynh, Thanh Tung Nguyen, Xuan Khuyen Bui, Dinh Lam Vu, Son Tung Bui, and Thi Hong Hiep Le. "Experimental Verification of a TH\(\text{z}\) Multi-band Metamaterial Absorber." Communications in Physics 30, no. 4 (2020): 311. http://dx.doi.org/10.15625/0868-3166/30/4/15081.

Der volle Inhalt der Quelle
Annotation:
Multi-band metamaterial absorbers have been of great interest owing to their potentials for a wide range of communicating, sensing, imaging, and energy harvesting applications. In this work, we experimentally investigate a four-band metamaterial absorber operating at THz frequencies. The metamaterials are fabricated using the maskless UV photolithography and e-beam evaporation techniques. The absorption spectra of the proposed absorber are measured using the micro-Fourier transformed infrared spectroscopy. It was demonstrated that multi-band absorption behavior originates from different indivi
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Li, Xin, Qiushi Li, Liang Wu, Zongcheng Xu, and Jianquan Yao. "Focusing on the Development and Current Status of Metamaterial Absorber by Bibliometric Analysis." Materials 16, no. 6 (2023): 2286. http://dx.doi.org/10.3390/ma16062286.

Der volle Inhalt der Quelle
Annotation:
In this paper, a total of 4770 effective documents about metamaterial absorbers were retrieved from the Web of Science Core Collection database. We scientifically analyzed the co-occurrence network of co-citation analysis by author, country/region, institutional, document, keywords co-occurrence, and the timeline of the clusters in the field of metamaterial absorber. Landy N. I.’s, with his cooperator et al., first experiment demonstrated a perfect metamaterial absorber microwave to absorb all incidents of radiation. From then on, a single-band absorber, dual-band absorber, triple-band absorbe
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Neil, Thomas R., Zhiyuan Shen, Daniel Robert, Bruce W. Drinkwater, and Marc W. Holderied. "Moth wings are acoustic metamaterials." Proceedings of the National Academy of Sciences 117, no. 49 (2020): 31134–41. http://dx.doi.org/10.1073/pnas.2014531117.

Der volle Inhalt der Quelle
Annotation:
Metamaterials assemble multiple subwavelength elements to create structures with extraordinary physical properties (1–4). Optical metamaterials are rare in nature and no natural acoustic metamaterials are known. Here, we reveal that the intricate scale layer on moth wings forms a metamaterial ultrasound absorber (peak absorption = 72% of sound intensity at 78 kHz) that is 111 times thinner than the longest absorbed wavelength. Individual scales act as resonant (5) unit cells that are linked via a shared wing membrane to form this metamaterial, and collectively they generate hard-to-attain broa
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wang Yurang, Qu Weiwei, Li Guilin, Deng Hu, and Shang Liping. "An optimization method for terahertz metamaterial absorber based on MOPSO." Acta Physica Sinica 74, no. 5 (2025): 0. https://doi.org/10.7498/aps.74.20241684.

Der volle Inhalt der Quelle
Annotation:
Metamaterials can freely control terahertz waves to obtain the desired electromagnetic characteristics by designing the geometry and direction of the unit structure, which is widely used in sensing, communication and stealth technology in radar. The traditional design of terahertz metamaterial absorber usually requires continuous structural adjustment and a large number of simulations to meet the expected requirements. The process is heavily dependent on the experience of researchers, and the physical modeling and simulation solution process is time-consuming and inefficient, which has greatly
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Yang, Guishuang, Fengping Yan, Xuemei Du, et al. "Tunable broadband terahertz metamaterial absorber based on vanadium dioxide." AIP Advances 12, no. 4 (2022): 045219. http://dx.doi.org/10.1063/5.0082295.

Der volle Inhalt der Quelle
Annotation:
The special electromagnetic properties of metamaterials have contributed to the development of terahertz technology, and terahertz broadband absorbers for various applications have been investigated. The design of metamaterial absorbers with tunability is in a particularly attractive position. In this work, a tunable broadband terahertz metamaterial absorber is proposed based on the phase transition material vanadium dioxide (VO2). The simulation results show that an excellent absorption bandwidth reaches 3.78 THz with the absorptivity over 90% under normal incidence. The absorptivity of the p
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Gu, Leilei, Hongzhan Liu, Zhongchao Wei, Ruihuan Wu, and Jianping Guo. "Optimized Design of Plasma Metamaterial Absorber Based on Machine Learning." Photonics 10, no. 8 (2023): 874. http://dx.doi.org/10.3390/photonics10080874.

Der volle Inhalt der Quelle
Annotation:
Metamaterial absorbers have become a popular research direction due to their broad application prospects, such as in radar, infrared imaging, and solar cell fields. Usually, nanostructured metamaterials are associated with a large number of geometric parameters, and traditional simulation designs are time consuming. In this paper, we propose a framework for designing plasma metamaterial absorbers in both a forward prediction and inverse design composed of a primary prediction network (PPN) and an auxiliary prediction network (APN). The framework can build the relationship between the geometric
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Li, Xiu, Chang Jun Hu, and Yang Wang. "Design of Metamaterial Absorber with Ultra-broadband and High Absorption." Journal of Physics: Conference Series 2557, no. 1 (2023): 012077. http://dx.doi.org/10.1088/1742-6596/2557/1/012077.

Der volle Inhalt der Quelle
Annotation:
Abstract Metamaterial absorbers with perfect absorption properties are essential in various fields. A multilayer metamaterial disc absorber has been designed and analyzed using a finite-difference time-domain method. In the wavelength range from 300 nm to 3000 nm, this metamaterial absorber absorbs more than 90%. The metamaterial absorber is polarisation-insensitive due to its symmetric structure. On the other hand, the designed absorber still provides a high absorbance (>80%) at an incidence angle of 60°. Surface plasmon resonance (SPR), cavity resonance, local surface plasmon resonance (L
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Liu, Xiajun, Feng Xia, Mei Wang, Jian Liang, and Maojin Yun. "Working Mechanism and Progress of Electromagnetic Metamaterial Perfect Absorber." Photonics 10, no. 2 (2023): 205. http://dx.doi.org/10.3390/photonics10020205.

Der volle Inhalt der Quelle
Annotation:
Electromagnetic metamaterials are artificial subwavelength composites with periodic structures, which can interact strongly with the incident light to achieve effective control of the light field. Metamaterial absorbers can achieve nearly 100% perfect absorption of incident light at a specific frequency, so they are widely used in sensors, optical switches, communication, and other fields. Based on the development history of metamaterials, this paper discusses the research background and significance of metamaterial perfect absorbers. Some perfect absorption mechanisms, such as impedance match
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wang, Xingzhong, Shiteng Rui, Shaokun Yang, Weiquan Zhang, and Fuyin Ma. "A low-frequency pure metal metamaterial absorber with continuously tunable stiffness." Applied Mathematics and Mechanics 45, no. 7 (2024): 1209–24. http://dx.doi.org/10.1007/s10483-024-3158-7.

Der volle Inhalt der Quelle
Annotation:
AbstractTo address the incompatibility between high environmental adaptability and deep subwavelength characteristics in conventional local resonance metamaterials, and overcome the deficiencies in the stability of existing active control techniques for band gaps, this paper proposes a design method of pure metal vibration damping metamaterial with continuously tunable stiffness for wideband elastic wave absorption. We design a dual-helix narrow-slit pure metal metamaterial unit, which possesses the triple advantage of high spatial compactness, low stiffness characteristics, and high structura
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Dissertationen zum Thema "METAMATERIAL ABSORBER"

1

Liu, Xianliang. "Infrared Metamaterial Absorbers: Fundamentals and Applications." Thesis, Boston College, 2013. http://hdl.handle.net/2345/3829.

Der volle Inhalt der Quelle
Annotation:
Thesis advisor: Willie J. Padilla<br>Realization of an ideal electromagnetic absorber has long been a goal of engineers and is highly desired for frequencies above the microwave regime. On the other hand, the desire to control the blackbody radiation has long been a research topic of interest for scientists--one particular theme being the construction of a selective emitter whose thermal radiation is much narrower than that of a blackbody at the same temperature. In this talk, I will present the computational and experimental work that was used to demonstrate infrared metamaterial absorbers an
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Watts, Claire. "Metamaterials and their applications towards novel imaging technologies." Thesis, Boston College, 2015. http://hdl.handle.net/2345/bc-ir:104631.

Der volle Inhalt der Quelle
Annotation:
Thesis advisor: Willie J. Padilla<br>This thesis will describe the implementation of novel imaging applications with electromagnetic metamaterials. Metamaterials have proven to be host to a multitude of interesting physical phenomena and give rich insight electromagnetic theory. This thesis will explore not only the physical theory that give them their interesting electromagnetic properties, but also the many applications of metamaterials. There is a strong need for efficient, low cost imaging solutions, specifically in the longer wavelength regime. While this technology has often been at a st
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

SAXENA, GAURAV. "DESIGN AND ANALYSIS OF MICROWAVE COMPONENTS FOR MIMO COMMUNICATION SYSTEM." Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2020. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18776.

Der volle Inhalt der Quelle
Annotation:
Wireless communication demands better channel capacity with a high data rate in the modern era. To fulfill these demands, the MIMO-communication systems are developed that use manifold antennas for transmitter and receiver end. MIMO is a state-of-art technology that improves the reliability of the communication systems by utilizing the diversity technique to mitigate the multi-path fading issues, where signals may come together belligerently at the receiver. Improve spectral efficiency is achieved by the total transmitted power spreading over the antennas. Thus, MIMO can increase channel capac
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

McMahan, Michael T. "Metamaterial absorbers for microwave detection." Thesis, Monterey, California: Naval Postgraduate School, 2015. http://hdl.handle.net/10945/45904.

Der volle Inhalt der Quelle
Annotation:
Approved for public release; distribution is unlimited<br>The development of high-power microwave weapons and dependence on electronics in modern weapon systems presents a high-power microwave weapons threat in future military conflicts. This study experimentally determines the absorption characteristics of simple metamaterial devices to potentially be used as protection and identification mechanisms, constructed through standard printed circuit board manufacturing processes, in the microwave region. Experimental results and analysis techniques are presented confirming absorption peaks in the
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Noor, Adnan. "Metamaterial electromagnetic absorbers and plasmonic structures." Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/metamaterial-electromagnetic-absorbers-and-plasmonic-structures(7028ac57-86c2-4557-8f57-1acb03ee8800).html.

Der volle Inhalt der Quelle
Annotation:
In this thesis metamaterial radar absorbers and plasmonic structures have been investigated. Following a brief overview covering metamaterial structures, and their applications in various areas of Microwave Engineering, a novel thin metamaterial wideband radar absorber, formed by two layers of resistive Hilbert curve arrays, is proposed and analysed numerically in HFSS, revealing a reduction in Monostatic Radar Cross Section (RCS) of more than 10 dB from 9.1 to 18.8 GHz (70% fractional bandwidth) for both polarizations. The structure has thickness of only 0.11λ to 0.24λ at lowest and highest f
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hao, Jianping. "Broad band electromagnetic perfect metamaterial absorbers." Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10076/document.

Der volle Inhalt der Quelle
Annotation:
Ce travail de thèse concerne les structures artificielles à base de métamatériaux permettant la réalisation d’absorbants parfaits. Après une brève introduction des métamatériaux, de leur fonctionnement en tant qu’absorbants et de l’état de l’art, quatre types de structures fonctionnant en bandes centimétrique ou millimétrique ont été conçus puis fabriqués à savoir (i) des réseaux de cubes BaSrTiO3 (BST) basés sur les résonances de Mie, (ii) des réseaux désordonnés composés d’anneaux métalliques mettant en jeu des effets de résonance semblables aux systèmes plasmoniques (iii) des absorbants à q
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Beeharry, Thtreswar. "Study of the electromagnetic interactions between radar equipment under integrated and compact mature : design and validation." Thesis, Paris 10, 2019. http://www.theses.fr/2019PA100011.

Der volle Inhalt der Quelle
Annotation:
Des propriétés électromagnétiques (EM) intéressantes peuvent être réalisées avec des Métamatériaux (MM), qui sont des matériaux artificiels sub-longueur d’ondes. Les propriétés EM peuvent être modifiées en modifiant la géométrie des MM. Les MM sont utilisés entre autres pour la conception d’antennes miniatures, des Absorbants Radars (AR) et le contournement des Ondes Electromagnétiques (OEM). Dans cette thèse nous avons utilisé des Surfaces Sélectives en Fréquences (FSS), qui sont une famille des MM, pour la réalisation des AR fines couches large bande. Ces AR sont destinés à la réduction des
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Seren, Huseyin R. "Optically controlled metamaterial absorbers in the terahetz regime." Thesis, Boston University, 2014. https://hdl.handle.net/2144/12950.

Der volle Inhalt der Quelle
Annotation:
Thesis (Ph.D.)--Boston University<br>Electromagnetic wave absorbers have been intensely investigated in the last century and found important applications particularly in radar and microwave technologies to provide anechoic test chambers, or vehicle stealth. Adding new features such as dynamic modulation, absorption frequency tunability, and nonlinearity, absorbers gain further functions as spatial light modulators, adjustable protective layers, and saturable absorbers which was a key factor in creation of ultra-fast lasers. These efforts required a rigorous search on various materials to find
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kearney, Brian T. "Enhancing microbolometer performance at terahertz frequencies with metamaterial absorbers." Thesis, Monterey, California: Naval Postgraduate School, 2013. http://hdl.handle.net/10945/37647.

Der volle Inhalt der Quelle
Annotation:
Approved for public release; distribution is unlimited<br>For Terahertz (THz) imaging to be useful outside of a laboratory setting, inexpensive yet sensitive detectors such as uncooled microbolometers will be required. Metamaterials can improve THz absorption without significantly increasing the thermal mass or using exotic materials because their absorption is primarily dependent on the geometry of the materials and not their individual optical properties. Finite Element (FE) simulations revealed that an array of squares above a ground plane separated by a dielectric is efficient, yet thin. M
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Savvas, Michail. "Characterization of terahertz bi-material sensors with integrated metamaterial absorbers." Thesis, Monterey, California: Naval Postgraduate School, 2013. http://hdl.handle.net/10945/37711.

Der volle Inhalt der Quelle
Annotation:
Approved for public release; distribution is unlimited<br>THz radiation covers the region of the electro-magnetic (EM) spectrum between the microwaves and infra-red (IR), corresponding to frequencies from approximately 100 GHz to 10 THz. Recently, new imaging techniques, which take advantage of the special properties of THz waves, have been developed. Despite the great interest in these new techniques, limitations such as the lack of appropriate detectors and powerful sources are placing the technology in the research domain. The objective of this thesis is to characterize and analyze a set of
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Bücher zum Thema "METAMATERIAL ABSORBER"

1

Padilla, Willie J., and Kebin Fan. Metamaterial Electromagnetic Wave Absorbers. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-03765-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Advanced Electromagnetic Applications: EBG, METAMATERIAL MICROWAVE ABSORBER and RECTENNA. Independently Published, 2020.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Padilla, Willie J., and Kebin Fan. Metamaterial Electromagnetic Wave Absorbers. Morgan & Claypool, 2022.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Neubauer, Noelannah, Antonio Miguel Cruz, Kebin Fan, Willie J. Padilla, and Adriana Ríos Rincón. Metamaterial Electromagnetic Wave Absorbers. Springer International Publishing AG, 2022.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Fan, Kebin, and Willie J. Padilla. Metamaterial Electromagnetic Wave Absorbers. Morgan & Claypool Publishers, 2022.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

K, Sreelal R. Advanced Electromagnetic Applications: ELECTROMAGNETIC BAND-GAP MATERIALS and METAMATERIAL MICROWAVE ABSORBERS. Independently Published, 2020.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Appasani, Bhargav, Om Prakash Acharya, Amitkumar Vidyakant Jha, and Nisha Gupta, eds. Metamaterials for Microwave and Terahertz Applications: Absorbers, Sensors and Filters. Nova Science Publishers, 2022. http://dx.doi.org/10.52305/aphy8244.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Metamaterials for Microwave and Terahertz Applications: Absorbers, Sensors and Filters. Nova Science Publishers, Incorporated, 2022.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Metamaterials for Microwave and Terahertz Applications: Absorbers, Sensors and Filters. Nova Science Publishers, Incorporated, 2022.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "METAMATERIAL ABSORBER"

1

Dey, Nikhil, Sukhvinder Kaur, and Ravendra K. Varshney. "Simplified Terahertz Wideband Metamaterial Absorber." In Lecture Notes in Electrical Engineering. Springer Nature Singapore, 2024. https://doi.org/10.1007/978-981-97-4760-3_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Agarwal, Sajal, and Yogendra Kumar Prajapati. "Metal-Insulator-Metal Metamaterial Helical Absorber." In Lecture Notes in Electrical Engineering. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2631-0_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Riya, Surendra Kumar Gupta, and Amit Bage. "THz Wideband Metamaterial Absorber for Different Applications." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-77075-3_29.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Choudhary, Nikita, and Anjani Kumar Tiwari. "Numerical Investigation of Dual-Band Metamaterial Absorber." In Lecture Notes in Electrical Engineering. Springer Nature Singapore, 2024. https://doi.org/10.1007/978-981-97-4760-3_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Jain, Vandana, Sanjeev Yadav, Bhavana Peswani, Manish Jain, H. S. Mewara, and M. M. Sharma. "Design of Square Shaped Polarization Sensitive Metamaterial Absorber." In Proceedings of First International Conference on Information and Communication Technology for Intelligent Systems: Volume 2. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30927-9_37.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ranjan, Prakash, Chetan Barde, Komal Roy, Rashmi Sinha, Sanjay Kumar, and Debolina Das. "Pixelated Wideband Metamaterial Absorber for X-band Applications." In Lecture Notes in Electrical Engineering. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4975-3_44.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Mahindroo, Kashish, Vani Sadadiwala, Vimlesh Singh, Devender Sharma, and Sarthak Singhal. "Triple-Band Polarization Independent C-Band Metamaterial Absorber." In Advances in Communication, Devices and Networking. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2004-2_28.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Shruti and Sasmita Pahadsingh. "Multiband Ultrathin Terahertz Metamaterial Absorber for Sensing Application." In Lecture Notes in Electrical Engineering. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4866-0_64.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Babu, T. R. Ganesh, P. Sukumar, R. Usha, and R. Praveena. "Design and Simulation of Multiband Terahertz Metamaterial Absorber." In Advances in Engineering Research. Atlantis Press International BV, 2024. http://dx.doi.org/10.2991/978-94-6463-529-4_36.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Lee, Young Pak, Joo Yull Rhee, Young Joon Yoo, and Ki Won Kim. "Polarization-Independent and Wide-Incident-Angle Metamaterial Perfect Absorber." In Metamaterials for Perfect Absorption. Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0105-5_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "METAMATERIAL ABSORBER"

1

Climente, Alfonso, Daniel Torrent, and Jose´ Sa´nchez-Dehesa. "Noise Reduction by Perfect Absorbers Based on Acoustic Metamaterials." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65247.

Der volle Inhalt der Quelle
Annotation:
We have designed a cylindrical perfect absorber based on acoustic metamaterials. The absorber consists of a metamaterial shell that surrounds a center that dissipates the acoustic energy. The metamaterial shell is designed so that perfectly matches the acoustic impedance of the air background and guides the sound to the center. Numerical simulations are reported about the efficiency of the absorber as a function of the absorbing material employed at the center.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tanaka, Takuo. "Metamaterial absorbers and their applications." In JSAP-OSA Joint Symposia. Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.8a_a409_4.

Der volle Inhalt der Quelle
Annotation:
Recent advances in metamaterials enable us to create unprecedented optical materials, and as a example of such materials, perfect absorptive material surfaces within a certain frequency range were demonstrated. Since the metamaterial absorber offers a unique surface condition with tailored absorption properties, a wide variety of potential applications have been proposed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Omeis, F., R. Smaali, A. Moreau, T. Taliercio, and E. Centeno. "Universal metamaterial absorber." In 2017 11th International Congress on Engineered Materials Platforms for Novel Wave Phenomena (Metamaterials). IEEE, 2017. http://dx.doi.org/10.1109/metamaterials.2017.8107906.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Xiaofei, S., J. Ji, L. You, and W. Wei. "MXene Metamaterial Absorber." In 2024 IEEE International Conference on Computational Electromagnetics (ICCEM). IEEE, 2024. http://dx.doi.org/10.1109/iccem60619.2024.10559113.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Pitchappa, Prakash, Chong Pei Ho, Piotr Kropelnicki, and Chengkuo Lee. "Complementary metamaterial infrared absorber." In 2013 International Conference on Optical MEMS and Nanophotonics (OMN). IEEE, 2013. http://dx.doi.org/10.1109/omn.2013.6659100.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bouras, Khedidja, Abdelhadi Labiad, and Mouloud Bouzouad. "Multiband Frequency Metamaterial Absorber." In 2019 International Conference on Advanced Electrical Engineering (ICAEE). IEEE, 2019. http://dx.doi.org/10.1109/icaee47123.2019.9014769.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Babu, T. R. Ganesh, R. Praveena, N. Sureshkumar, and K. Sakthimurugan. "Broadband Terahertz Metamaterial Absorber." In 2023 9th International Conference on Smart Structures and Systems (ICSSS). IEEE, 2023. http://dx.doi.org/10.1109/icsss58085.2023.10407190.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wang, Jing, Xianglin Kong, Ruofeng Xu, et al. "Tunable Wideband Metamaterial Absorber." In 2023 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC). IEEE, 2023. http://dx.doi.org/10.1109/csrswtc60855.2023.10426874.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hedayati, M. K., M. Abdelaziz, A. R. Jamali, and M. Elbahri. "Tailored metamaterial perfect absorber." In 2015 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS). IEEE, 2015. http://dx.doi.org/10.1109/metamaterials.2015.7342551.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Lin, Weihao, Xiangkun Kong, Xin Jin, Shunliu Jiang, Lingqi Kong, and Xuemeng Wang. "Liquid Reconfigurable Metamaterial Absorber." In 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2021. http://dx.doi.org/10.1109/icmmt52847.2021.9617827.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "METAMATERIAL ABSORBER"

1

Stinson, Eric A. Metamaterial Resonant Absorbers for Terahertz Sensing. Defense Technical Information Center, 2015. http://dx.doi.org/10.21236/ad1009293.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!