Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Microbial metabolism“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Microbial metabolism" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Microbial metabolism"
VINOPAL, R. T. „Microbial Metabolism“. Science 239, Nr. 4839 (29.01.1988): 513.2–514. http://dx.doi.org/10.1126/science.239.4839.513.
Der volle Inhalt der QuelleDowns, Diana M. „Understanding Microbial Metabolism“. Annual Review of Microbiology 60, Nr. 1 (Oktober 2006): 533–59. http://dx.doi.org/10.1146/annurev.micro.60.080805.142308.
Der volle Inhalt der QuelleARNAUD, CELIA. „VIEWING MICROBIAL METABOLISM“. Chemical & Engineering News 85, Nr. 38 (17.09.2007): 11. http://dx.doi.org/10.1021/cen-v085n038.p011.
Der volle Inhalt der QuelleWackett, Lawrence P. „Microbial metabolism prediction“. Environmental Microbiology Reports 2, Nr. 1 (08.02.2010): 217–18. http://dx.doi.org/10.1111/j.1758-2229.2010.00144.x.
Der volle Inhalt der QuelleHahn-Hägerdal, Bärbel, und Neville Pamment. „Microbial Pentose Metabolism“. Applied Biochemistry and Biotechnology 116, Nr. 1-3 (2004): 1207–10. http://dx.doi.org/10.1385/abab:116:1-3:1207.
Der volle Inhalt der QuelleWackett, Lawrence P. „Microbial community metabolism“. Environmental Microbiology Reports 5, Nr. 2 (05.03.2013): 333–34. http://dx.doi.org/10.1111/1758-2229.12041.
Der volle Inhalt der QuelleWackett, Lawrence P. „Microbial community metabolism“. Environmental Microbiology Reports 15, Nr. 3 (05.05.2023): 240–41. http://dx.doi.org/10.1111/1758-2229.13161.
Der volle Inhalt der QuelleRajini, K. S., P. Aparna, Ch Sasikala und Ch V. Ramana. „Microbial metabolism of pyrazines“. Critical Reviews in Microbiology 37, Nr. 2 (11.04.2011): 99–112. http://dx.doi.org/10.3109/1040841x.2010.512267.
Der volle Inhalt der QuelleChubukov, Victor, Luca Gerosa, Karl Kochanowski und Uwe Sauer. „Coordination of microbial metabolism“. Nature Reviews Microbiology 12, Nr. 5 (24.03.2014): 327–40. http://dx.doi.org/10.1038/nrmicro3238.
Der volle Inhalt der QuelleAsh, Caroline. „Microbial entrainment of metabolism“. Science 365, Nr. 6460 (26.09.2019): 1414.10–1416. http://dx.doi.org/10.1126/science.365.6460.1414-j.
Der volle Inhalt der QuelleDissertationen zum Thema "Microbial metabolism"
Burgess, Mary Catherine. „Insights into microbial metabolism“. Thesis, Montana State University, 2012. http://etd.lib.montana.edu/etd/2012/burgess/BurgessMC0512.pdf.
Der volle Inhalt der QuellePatterson, Andrea Jennifer. „Microbial metabolism of organophosphonates“. Thesis, University of Ulster, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.232856.
Der volle Inhalt der QuelleLister, Diane Lorraine. „The microbial metabolism of cocaine“. Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390042.
Der volle Inhalt der QuelleGriffiths, David A. „Microbial mimicry of mammalian drug metabolism“. Thesis, Cranfield University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385132.
Der volle Inhalt der QuelleHansman, Roberta Lynn. „Microbial metabolism in the deep ocean“. Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2008. http://wwwlib.umi.com/cr/ucsd/fullcit?p3324933.
Der volle Inhalt der QuelleTitle from first page of PDF file (viewed November 14, 2008). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
Ohshiro, Takashi. „MICROBIAL SULFUR METABOLISM OF HETEROCYCLIC SULFUR COMPOUNDS“. Kyoto University, 1996. http://hdl.handle.net/2433/78073.
Der volle Inhalt der QuelleChandrasekaran, Appavu. „Microbial and human metabolism of cardiac glycosides /“. The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487265555441466.
Der volle Inhalt der QuellePires, Aline Mara Barbosa. „Estudos metabolicos para otimização de condições nutricionais e de cultivo para produção microbiana de acido hialuronico“. [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/267027.
Der volle Inhalt der QuelleTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica
Made available in DSpace on 2018-08-14T16:51:23Z (GMT). No. of bitstreams: 1 Pires_AlineMaraBarbosa_D.pdf: 5667585 bytes, checksum: 99be814ed0f4b52809cad017f91235eb (MD5) Previous issue date: 2009
Resumo: Neste trabalho, estudou-se a otimização da produção de ácido hialurônico (HA) por cultivo de Streptococcus zooepidemicus em batelada, com base nas alterações metabólicas ao longo do cultivo. Ás condições ambientais estudadas foram a concentração inicial de glicose, controle do pH, íons minerais e fonte de nitrogênio orgânico. Nos cultivos em frascos, a concentração inicial de glicose não alterou nem o crescimento celular nem a produção de HA. Entretanto, no cultivo em biorreator sem o controle do pH, ambos foram fortemente dependentes da concentração inicial de glicose, com maior produção de HA (1,21 g.L-1) no cultivo realizado em meio com 25 g.L-1 glicose. Tal condição nutricional foi a única que apresentou maior conversão de glicose em HA (YHA/S) do que conversão de glicose em massa celular (YX/S). O controle do pH ao longo do cultivo com 25 g.L-1 glicose resultou em maior produtividade de células (0,21 g.L-1.h-1) e de HA (0,10 g.L-1.h-1). apesar dos menores rendimentos em relação à glicose. A combinação desses resultados relaciona o maior direcionamento da fonte de carbono para HA do que para células a uma resposta do microrganismo ao stress ácido ocorrido no cultivo sem controle do pH. Uma análise da distribuição dos fluxos metabólicos nas condições ambientais estudadas demonstrou que as alterações na via de produção de HA foram mais relacionadas à distribuição dos fluxos para os açúcares precursores da síntese do polímero que à disponibilidade de energia (ATP) ou potencial redutor (NADH/NAD+) das células. A total suplementação do meio de cultura com íons minerais (K+, Mg++, Na+, Fe++, Ca++, Mn++, Zn++ e Cu++) foi benéfica para o crescimento celular, porém não alterou a produção de HA de forma significativa. O estudo demonstrou ainda que a qualidade do polímero produzido pode ser modulada pela suplementação do meio com íons minerais. As propriedades reológicas do HA com baixo teor de proteína (0.44 g.g-1) e massa molar média de 4.0 x 106 Da demonstraram elevada densidade de emaranhamento das cadeias devido à alta dependência do módulo elástico com a concentração e desvios da viscosidade complexa com relação à regra de Cox-Merz. O estudo de meios alternativos contendo derivados agroindustriais demonstrou maiores concentrações de HA em meios contendo extrato de levedura como fonte de nitrogênio. Este conjunto de resultados contribui para a otimização da produção de HA, assim como para um melhor entendimento do metabolismo do Streptococcus zooepidemicus.
Abstract: In this work, h was studied the optimization of HA production by hatch culture of Streptococcus zooepidemicus, with focus on the metabolic changes along cultivation. The environmental conditions studied were the initial glucose concentration, pH control, mineral ions and organic nitrogen source. In flask cultivations, the initial glucose concentration had no influence on the amounts of either the biomass or the MA produced. However, in bioreactor cultivations, at non-controlled pH. both were strongly dependent on the initial glucose concentration. The highest HA concentration (1.21 g.L-1) was obtained from 25 g.L-1 glucose, which was the only cultivation where the conversion of glucose to HA (YHA/S) was higher than the one of glucose to biomass (YX/S). Not only did the pH control along cultivation result in higher cell productivity (0.21 g.L-1.h-1), but also in the HA productivity (0.10 g.L-1.h-1), However, the HA and cell yields from glucose were lower. The combination of these results relates the higher direction of the carbon source to the HA synthesis at the expenses of the cell growth to a microbial response to the acid stress observed in non-controlled pH. An analysis of the metabolic flux distribution in the environmental conditions studied shows that the changes in the HA production pathway were more related to die distributions of duxes 10 the precursors of HA synthesis than to the energy availability (ATP) or redox slate (NADH/NAD+) of the cells. The total supplementation of the culture medium with ions was beneficial to die cell growth. However, if did not have any influence on the HA production. Moreover, the results showed that the HA quality may be modulated through the mineral ion supplementation. The rheological properties of HA with low protein content (0.44 g.g-1) and average molecular weight of 4.0 x 106 Da showed the high entanglements density of the HA chains due to the high storage modulus concentration dependence as well as to the complex viscosity deviations with respect to the Cox - Merz rule. Alternative media containing agricultural resources derivates were studied. The higher HA concentrations were produced in media whose organic nitrogen source was yeast extract. This set of results contributes not only to the optimization of the HA production, but also to a better understanding of the Streptococcus zooepidemicus metabolism.
Doutorado
Desenvolvimento de Processos Biotecnologicos
Doutor em Engenharia Química
Johnson, Winifred M. Ph D. Massachusetts Institute of Technology. „Linking microbial metabolism and organic matter cycling through metabolite distributions in the ocean“. Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/108909.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references.
Key players in the marine carbon cycle are the ocean-dwelling microbes that fix, remineralize, and transform organic matter. Many of the small organic molecules in the marine carbon pool have not been well characterized and their roles in microbial physiology, ecological interactions, and carbon cycling remain largely unknown. In this dissertation metabolomics techniques were developed and used to profile and quantify a suite of metabolites in the field and in laboratory experiments. Experiments were run to study the way a specific metabolite can influence microbial metabolite output and potentially processing of organic matter. Specifically, the metabolic response of the heterotrophic marine bacterium, Ruegeria pomeroyi, to the algal metabolite dimethylsulfoniopropionate (DMSP) was analyzed using targeted and untargeted metabolomics. The manner in which DMSP causes R. pomeroyi to modify its biochemical pathways suggests anticipation by R. pomeroyi of phytoplankton-derived nutrients and higher microbial density. Targeted metabolomics was used to characterize the latitudinal and vertical distributions of particulate and dissolved metabolites in samples gathered along a transect in the Western Atlantic Ocean. The assembled dataset indicates that, while many metabolite distributions co-vary with biomass abundance, other metabolites show distributions that suggest abiotic, species specific, or metabolic controls on their variability. On sinking particles in the South Atlantic portion of the transect, metabolites possibly derived from degradation of organic matter increase and phytoplankton-derived metabolites decrease. This work highlights the role DMSP plays in the metabolic response of a bacterium to the environment and reveals unexpected ways metabolite abundances vary between ocean regions and are transformed on sinking particles. Further metabolomics studies of the global distributions and interactions of marine biomolecules promise to provide new insights into microbial processes and metabolite cycling.
by Winifred M. Johnson.
Ph. D.
Newbold, Charles James. „Microbial metabolism of lactic acid in the rumen“. Thesis, University of Glasgow, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235529.
Der volle Inhalt der QuelleBücher zum Thema "Microbial metabolism"
Dahl, Christiane, und Cornelius G. Friedrich, Hrsg. Microbial Sulfur Metabolism. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72682-1.
Der volle Inhalt der QuelleChristiane, Dahl, und Friedrich Cornelius G, Hrsg. Microbial sulfur metabolism. Berlin: Springer, 2008.
Den vollen Inhalt der Quelle findenSpormann, Alfred M. Principles of Microbial Metabolism and Metabolic Ecology. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28218-8.
Der volle Inhalt der QuelleCaldwell, Daniel R. Microbial physiology and metabolism. 2. Aufl. Belmont, Calif: Star, 1999.
Den vollen Inhalt der Quelle findenPatterson, Andrea Jennifer. Microbial metabolism of organophosphonates. [S.l: The Author], 2001.
Den vollen Inhalt der Quelle findenK, Poole Robert, Dow Crawford S und Society for General Microbiology. Cell Biology Group., Hrsg. Microbial gas metabolism: Mechanistic, metabolic, and biotechnological aspects. London: Published for the Society for General Microbiology by Academic Press, 1985.
Den vollen Inhalt der Quelle findenStolz, John F., und Ronald S. Oremland, Hrsg. Microbial Metal and Metalloid Metabolism. Washington, DC, USA: ASM Press, 2011. http://dx.doi.org/10.1128/9781555817190.
Der volle Inhalt der QuelleWinkelmann, Günther, und Carl J. Carrano. Transition Metals in Microbial Metabolism. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003211129.
Der volle Inhalt der QuelleArora, Pankaj Kumar, Hrsg. Microbial Metabolism of Xenobiotic Compounds. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7462-3.
Der volle Inhalt der QuelleGünther, Winkelmann, und Carrano Carl J, Hrsg. Transition metals in microbial metabolism. Amsterdam: Harwood Academic Publishers, 1997.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Microbial metabolism"
Spormann, Alfred M. „Microbial Energetics“. In Principles of Microbial Metabolism and Metabolic Ecology, 35–57. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28218-8_3.
Der volle Inhalt der QuelleSpormann, Alfred M. „Microbial Kinetics“. In Principles of Microbial Metabolism and Metabolic Ecology, 73–97. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28218-8_5.
Der volle Inhalt der QuelleHahn-Hägerdal, Bärbel, und Neville Pamment. „Microbial Pentose Metabolism“. In Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO, 1207–9. Totowa, NJ: Humana Press, 2004. http://dx.doi.org/10.1007/978-1-59259-837-3_97.
Der volle Inhalt der QuelleHausinger, Robert P. „Microbial Nickel Metabolism“. In Biochemistry of Nickel, 181–201. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4757-9435-9_7.
Der volle Inhalt der QuelleTiquia-Arashiro, Sonia M. „Microbial CO Metabolism“. In Thermophilic Carboxydotrophs and their Applications in Biotechnology, 5–9. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11873-4_2.
Der volle Inhalt der QuelleWall, Judy D., Adam P. Arkin, Nurgul C. Balci und Barbara Rapp-Giles. „Genetics and Genomics of Sulfate Respiration in Desulfovibrio“. In Microbial Sulfur Metabolism, 1–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72682-1_1.
Der volle Inhalt der QuelleChan, Leong-Keat, Rachael Morgan-Kiss und Thomas E. Hanson. „Sulfur Oxidation in Chlorobium tepidum (syn. Chlorobaculum tepidum): Genetic and Proteomic Analyses“. In Microbial Sulfur Metabolism, 117–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72682-1_10.
Der volle Inhalt der QuelleStout, Jan, Lina De Smet, Bjorn Vergauwen, Savvas Savvides und Jozef Van Beeumen. „Structural Insights into Component SoxY of the Thiosulfate-Oxidizing Multienzyme System of Chlorobaculum thiosulfatiphilum“. In Microbial Sulfur Metabolism, 127–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72682-1_11.
Der volle Inhalt der QuelleFriedrich, Cornelius G., Armin Quentmeier, Frank Bardischewsky, Dagmar Rother, Grazyna Orawski, Petra Hellwig und Jürg Fischer. „Redox Control of Chemotrophic Sulfur Oxidation of Paracoccus pantotrophus“. In Microbial Sulfur Metabolism, 139–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72682-1_12.
Der volle Inhalt der QuelleKappler, Ulrike. „Bacterial Sulfite-Oxidizing Enzymes – Enzymes for Chemolithotrophs Only?“ In Microbial Sulfur Metabolism, 151–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72682-1_13.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Microbial metabolism"
Khanna, Namrata, Tanushri Chatterji, Suruchi Singh und Poonam Chaturvedi. „Microbial metabolism in bioremediation: A review“. In THE FOURTH SCIENTIFIC CONFERENCE FOR ELECTRICAL ENGINEERING TECHNIQUES RESEARCH (EETR2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0163146.
Der volle Inhalt der QuellePoulain, Alexandre, Daniel Gregoire, Noemie Lavoie und Benjamin Stenzler. „Mitigating Hg Pollution by Harnessing Anaerobic Microbial Metabolism“. In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.2110.
Der volle Inhalt der QuelleBrodie, E., P. Sorensen, U. Karaoz, D. Chadwick, N. Falco, N. Bouskill, H. Wainwright et al. „Remote Sensing of Microbial Metabolism from Genomes to Ecosystems“. In NSG2021 27th European Meeting of Environmental and Engineering Geophysics. European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.202120225.
Der volle Inhalt der QuelleRyan-Baker, M., Tuan Vo-Dinh, Guy D. Griffin, Gordon H. Miller, Jean P. Alarie, Robert S. Burlage, A. V. Palumbo, Dennis C. White und S. Herbes. „Optical monitor for microbial metabolism for hazardous waste application“. In OE/LASE '92, herausgegeben von Tuan Vo-Dinh. SPIE, 1992. http://dx.doi.org/10.1117/12.59339.
Der volle Inhalt der QuelleLuo, Tianqi, Daniel R. Bond und Joseph J. Talghader. „Photoresponse of Diode-Biased Microelectrodes for Enhanced Microbial Metabolism“. In 2023 International Conference on Optical MEMS and Nanophotonics (OMN) and SBFoton International Optics and Photonics Conference (SBFoton IOPC). IEEE, 2023. http://dx.doi.org/10.1109/omn/sbfotoniopc58971.2023.10230982.
Der volle Inhalt der QuelleGaskins, H. Rex. „Abstract SS01-02: Microbial sulfur metabolism and colorectal cancer risk“. In Abstracts: Sixth AACR Conference: The Science of Cancer Health Disparities; December 6–9, 2013; Atlanta, GA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7755.disp13-ss01-02.
Der volle Inhalt der QuelleSiddique, Tariq, und Julia Foght. „Methane Emissions from Oil Sand Tailings by Microbial Metabolism of Hydrocarbons“. In Environmental Management and Engineering / Unconventional Oil. Calgary,AB,Canada: ACTAPRESS, 2011. http://dx.doi.org/10.2316/p.2011.731-027.
Der volle Inhalt der QuelleHubert, C., M. Nemati, G. Voordouw und G. E. Jenneman. „Biogenic Sulfide Production in Continuous Systems: Containment Strategies Targeting Microbial Metabolism“. In Canadian International Petroleum Conference. Petroleum Society of Canada, 2002. http://dx.doi.org/10.2118/2002-114-ea.
Der volle Inhalt der QuelleGohier, C., und L. Drouet. „Reducing crude protein in diet by stimulating ruminal microbial growth with essential oils“. In 6th EAAP International Symposium on Energy and Protein Metabolism and Nutrition. The Netherlands: Wageningen Academic Publishers, 2019. http://dx.doi.org/10.3920/978-90-8686-891-9_42.
Der volle Inhalt der QuelleUdegbunam, E. O., J. P. Adkins, R. M. Knapp, M. J. McInerney und R. S. Tanner. „Assessing the Effects of Microbial Metabolism and Metabolites on Reservoir Pore Structure“. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1991. http://dx.doi.org/10.2118/22846-ms.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Microbial metabolism"
McKinlay, James B. Metabolism and Evolution of a Biofuel-Producing Microbial Coculture. Office of Scientific and Technical Information (OSTI), Juni 2018. http://dx.doi.org/10.2172/1459596.
Der volle Inhalt der QuelleLovley, Derek R. Diagnosis of In Situ Metabolic State and Rates of Microbial Metabolism During In Situ Uranium Bioremediation with Molecular Techniques. Office of Scientific and Technical Information (OSTI), November 2012. http://dx.doi.org/10.2172/1097098.
Der volle Inhalt der QuelleLovley, Derek R. Diagnosis of In Situ Metabolic State and Rates of Microbial Metabolism During In Situ Uranium Bioremediation with Molecular Techniques. Office of Scientific and Technical Information (OSTI), November 2012. http://dx.doi.org/10.2172/1055767.
Der volle Inhalt der QuelleSarvaiya, Niral, und Vijay Kothari. Audible sound in form of music can influence microbial growth, metabolism, and antibiotic susceptibility. Cold Spring Harbor Laboratory, März 2016. http://dx.doi.org/10.1101/044776.
Der volle Inhalt der QuelleKonisky, J. International Symposium on Topics in Microbial Diversity, Metabolism, and Physiology. Final report, May 22--23, 1992. Office of Scientific and Technical Information (OSTI), Juli 1993. http://dx.doi.org/10.2172/10158099.
Der volle Inhalt der QuelleHofmockel, Kirsten. Microbial drivers of global change at the aggregate scale: linking genomic function to carbon metabolism and warming. Office of Scientific and Technical Information (OSTI), Juni 2019. http://dx.doi.org/10.2172/1524429.
Der volle Inhalt der QuelleDroby, S., J. L. Norelli, M. E. Wisniewski, S. Freilich, A. Faigenboim und C. Dardick. Microbial networks on harvested apples and the design of antagonistic consortia to control postharvest pathogens. Israel: United States-Israel Binational Agricultural Research and Development Fund, 2020. http://dx.doi.org/10.32747/2020.8134164.bard.
Der volle Inhalt der QuelleMinz, Dror, Stefan J. Green, Noa Sela, Yitzhak Hadar, Janet Jansson und Steven Lindow. Soil and rhizosphere microbiome response to treated waste water irrigation. United States Department of Agriculture, Januar 2013. http://dx.doi.org/10.32747/2013.7598153.bard.
Der volle Inhalt der QuelleTURICK, CHARLES. Microbial Metabolite Production for Accelerated Metal and Radionuclide Bioremediation (Microbial Metabolite Production Report). Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/835058.
Der volle Inhalt der QuelleVarga, Gabriella A., Amichai Arieli, Lawrence D. Muller, Haim Tagari, Israel Bruckental und Yair Aharoni. Effect of Rumen Available Protein, Amimo Acids and Carbohydrates on Microbial Protein Synthesis, Amino Acid Flow and Performance of High Yielding Cows. United States Department of Agriculture, August 1993. http://dx.doi.org/10.32747/1993.7568103.bard.
Der volle Inhalt der QuelleYou might want to see the page in this language: English.