Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Microfabricati“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Microfabricati" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Microfabricati"
De Maria, C., L. Grassi, F. Vozzi, A. Ahluwalia und G. Vozzi. „Development of a novel micro-ablation system to realise micrometric and well-defined hydrogel structures for tissue engineering applications“. Rapid Prototyping Journal 20, Nr. 6 (20.10.2014): 490–98. http://dx.doi.org/10.1108/rpj-03-2012-0022.
Der volle Inhalt der QuelleDu, L. Q., C. Liu, H. J. Liu, J. Qin, N. Li und Rui Yang. „Design and Fabrication of Micro Hot Embossing Mold for Microfluidic Chip Used in Flow Cytometry“. Key Engineering Materials 339 (Mai 2007): 246–51. http://dx.doi.org/10.4028/www.scientific.net/kem.339.246.
Der volle Inhalt der QuelleBanerjee, Arunav S., Richard Blaikie und Wen Hui Wang. „Microfabrication Process for XYZ Stage-Needle Assembly for Cellular Delivery and Surgery“. Materials Science Forum 700 (September 2011): 195–98. http://dx.doi.org/10.4028/www.scientific.net/msf.700.195.
Der volle Inhalt der QuelleFolch, A., A. Ayon, O. Hurtado, M. A. Schmidt und M. Toner. „Molding of Deep Polydimethylsiloxane Microstructures for Microfluidics and Biological Applications“. Journal of Biomechanical Engineering 121, Nr. 1 (01.02.1999): 28–34. http://dx.doi.org/10.1115/1.2798038.
Der volle Inhalt der QuellePARK, W. B., J. H. CHOI, C. W. PARK, G. M. KIM, H. S. SHIN, C. N. CHU und B. H. KIM. „FABRICATION OF MICRO PROBE-TYPE ELECTRODES FOR MICROELECTRO-CHEMICAL MACHINING USING MICROFABRICATION“. International Journal of Modern Physics B 24, Nr. 15n16 (30.06.2010): 2639–44. http://dx.doi.org/10.1142/s0217979210065398.
Der volle Inhalt der QuelleStarodubov, Andrey, Roman Torgashov, Viktor Galushka, Anton Pavlov, Vladimir Titov, Nikita Ryskin, Anand Abhishek und Niraj Kumar. „Microfabrication, Characterization, and Cold-Test Study of the Slow-Wave Structure of a Millimeter-Band Backward-Wave Oscillator with a Sheet Electron Beam“. Electronics 11, Nr. 18 (09.09.2022): 2858. http://dx.doi.org/10.3390/electronics11182858.
Der volle Inhalt der QuelleLiu, Yue, Megan Chesnut, Amy Guitreau, Jacob Beckham, Adam Melvin, Jason Eades, Terrence R. Tiersch und William Todd Monroe. „Microfabrication of low-cost customisable counting chambers for standardised estimation of sperm concentration“. Reproduction, Fertility and Development 32, Nr. 9 (2020): 873. http://dx.doi.org/10.1071/rd19154.
Der volle Inhalt der QuelleAlvarez-Escobar, Marta, Sidónio C. Freitas, Derek Hansford, Fernando J. Monteiro und Alejandro Pelaez-Vargas. „Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces“. International Journal of Dentistry 2018 (2018): 1–5. http://dx.doi.org/10.1155/2018/4219625.
Der volle Inhalt der QuelleCreff, Justine, Laurent Malaquin und Arnaud Besson. „In vitro models of intestinal epithelium: Toward bioengineered systems“. Journal of Tissue Engineering 12 (Januar 2021): 204173142098520. http://dx.doi.org/10.1177/2041731420985202.
Der volle Inhalt der QuelleYang, Jian Zhong, Li Chao Pan, C. L. Kang, Gang Liu, Hui Juan Li, Z. You, D. H. Ren und Y. C. Tian. „Advance of the Micro-Magnetometer MEMSMag Research“. Advanced Materials Research 60-61 (Januar 2009): 241–45. http://dx.doi.org/10.4028/www.scientific.net/amr.60-61.241.
Der volle Inhalt der QuelleDissertationen zum Thema "Microfabricati"
Feng, Chunhua. „Microfabrication-compatible synthesis strategies for nanoscale electrocatalysts in microfabricated fuel cell applications /“. View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?CENG%202007%20FENG.
Der volle Inhalt der QuelleCannon, Andrew Hampton. „Unconventional Microfabrication Using Polymers“. Thesis, Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/19845.
Der volle Inhalt der QuelleBarham, Oliver M. „Microfabricated Bulk Piezoelectric Transformers“. Thesis, University of Maryland, College Park, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10615552.
Der volle Inhalt der QuellePiezoelectric voltage transformers (PTs) can be used to transform an input voltage into a different, required output voltage needed in electronic and electro- mechanical systems, among other varied uses. On the macro scale, they have been commercialized in electronics powering consumer laptop liquid crystal displays, and compete with an older, more prevalent technology, inductive electromagnetic volt- age transformers (EMTs). The present work investigates PTs on smaller size scales that are currently in the academic research sphere, with an eye towards applications including micro-robotics and other small-scale electronic and electromechanical sys- tems. PTs and EMTs are compared on the basis of power and energy density, with PTs trending towards higher values of power and energy density, comparatively, indicating their suitability for small-scale systems. Among PT topologies, bulk disc-type PTs, operating in their fundamental radial extension mode, and free-free beam PTs, operating in their fundamental length extensional mode, are good can- didates for microfabrication and are considered here. Analytical modeling based on the Extended Hamilton Method is used to predict device performance and integrate mechanical tethering as a boundary condition. This model differs from previous PT models in that the electric enthalpy is used to derive constituent equations of motion with Hamilton’s Method, and therefore this approach is also more generally applica- ble to other piezoelectric systems outside of the present work. Prototype devices are microfabricated using a two mask process consisting of traditional photolithography combined with micropowder blasting, and are tested with various output electri- cal loads. 4mm diameter tethered disc PTs on the order of .002cm
3 , two orders smaller than the bulk PT literature, had the followingperformance: a prototype with electrode area ratio (input area / output area) = 1 had peak gain of 2.3 (± 0.1), efficiency of 33 (± 0.1)% and output power density of 51.3 (± 4.0)W cm
-3 (for output power of80 (± 6)mW) at 1M? load, for an input voltage range of 3V-6V (± one standard deviation). The gain results are similar to those of several much larger bulk devices in the literature, but the efficiencies of the present devices are lower. Rectangular topology, free-free beam devices were also microfabricated across 3 or- ders of scale by volume, with the smallest device on the order of .00002cm
3 . These devices exhibited higher quality factorsand efficiencies, in some cases, compared to circular devices, but lower peak gain (by roughly 1/2 ). Limitations of the microfab- rication process are determined, and future work is proposed. Overall, the devices fabricated in the present work show promise for integration into small-scale engi- neered systems, but improvements can be made in efficiency, and potentially voltage gain, depending on the application
Mehregany, Mehran. „Microfabricated silicon electric mechanisms“. Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/14042.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 151-156).
by Mehran Mehregany.
Ph.D.
Florian, Baron Camilo. „Laser direct-writing for microfabrication“. Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/400403.
Der volle Inhalt der QuelleLa fabricació digital de dispositius tecnològics requereix el desenvolupament de noves i millors tècniques per al microprocessament de materials que al mateix temps siguin compatibles amb mètodes de producció en sèrie a gran escala com el roll-to-roll processing. Aquestes tècniques han de complir certs requisits relacionats amb la possibilitat de realitzar canvis de disseny ràpids durant el procés de fabricació, alta velocitat de processament, i al mateix temps permetre la producció de motius de forma controlada amb altes resolucions espacials. En la present tesi es proposen i implementen solucions viables a alguns dels reptes presents a la microfabricació amb làser tant substractiva com additiva. D'una banda, es presenta un nou mètode d'enfocament del feix làser sobre la mostra per l'ablació superficial de materials transparents que permet obtenir resolucions espacials que superen el límit de difracció del dispositiu òptic. D'altra banda, es duu a terme un estudi de la dinàmica de la impressió de líquids mitjançant làser a alta velocitat, de gran interès de cara a la implementació industrial de la tècnica. A més, es presenten estratègies d'impressió de tintes conductores amb l'objectiu de produir línies contínues amb alta qualitat d'impressió. Finalment s'inclouen dues propostes que són producte de la combinació d’ambues tècniques, la impressió de líquids i l'ablació amb làser.
Jeffery, Nicholas Toby. „PET radiochemistry on microfabricated devices“. Thesis, Imperial College London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.420892.
Der volle Inhalt der QuelleVelásquez, García Luis Fernando 1976. „A microfabricated colloid thruster array“. Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/82201.
Der volle Inhalt der QuelleLubratt, Mark Paul. „A voltage-tunable microfabricated accelerometer“. Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/37497.
Der volle Inhalt der QuelleHarris, Robert Michael. „Geometric simulation of microfabricated structures“. Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/11842.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 295-302).
Robert Michael Harris.
Ph.D.
Wang, Weihua. „Tools for flexible electrochemical microfabrication /“. Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/9854.
Der volle Inhalt der QuelleBücher zum Thema "Microfabricati"
Kordal, Richard, Arthur Usmani und Wai Tak Law, Hrsg. Microfabricated Sensors. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2002-0815.
Der volle Inhalt der QuelleFranssila, Sami. Introduction to Microfabrication. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9781119990413.
Der volle Inhalt der QuelleSugioka, Koji, Michel Meunier und Alberto Piqué, Hrsg. Laser Precision Microfabrication. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10523-4.
Der volle Inhalt der QuelleChakraborty, Suman, Hrsg. Microfluidics and Microfabrication. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-1543-6.
Der volle Inhalt der QuelleJ, Jackson Mark, Hrsg. Microfabrication and nanomanufacturing. Boca Raton, FL: Taylor & Francis, 2005.
Den vollen Inhalt der Quelle findenFranssila, Sami. Introduction to Microfabrication. New York: John Wiley & Sons, Ltd., 2005.
Den vollen Inhalt der Quelle findenChakraborty, Suman. Microfluidics and Microfabrication. Boston, MA: Springer Science+Business Media, LLC, 2010.
Den vollen Inhalt der Quelle findenNarayanan, Sundararajan, Hrsg. Microfabrication for microfluidics. Boston: Artech House, 2010.
Den vollen Inhalt der Quelle findenIntroduction to microfabrication. 2. Aufl. Chichester, West Sussex, England: John Wiley & Sons, 2010.
Den vollen Inhalt der Quelle findenMichel, Meunier, Piqué Alberto und SpringerLink (Online service), Hrsg. Laser Precision Microfabrication. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Microfabricati"
Adams, Thomas M., und Richard A. Layton. „Microfabrication laboratories“. In Introductory MEMS, 371–403. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-09511-0_13.
Der volle Inhalt der QuelleLeitão, Diana C., José Pedro Amaral, Susana Cardoso und Càndid Reig. „Microfabrication Techniques“. In Giant Magnetoresistance (GMR) Sensors, 31–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37172-1_2.
Der volle Inhalt der QuelleShoji, Satoru, und Kyoko Masui. „Nano-/Microfabrication“. In Encyclopedia of Polymeric Nanomaterials, 1–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36199-9_108-2.
Der volle Inhalt der QuelleJohnstone, Robert W., und M. Parameswaran. „Microfabrication Processes“. In An Introduction to Surface-Micromachining, 9–28. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4020-8021-0_2.
Der volle Inhalt der QuelleShoji, Satoru, und Kyoko Masui. „Nano-/Microfabrication“. In Encyclopedia of Polymeric Nanomaterials, 1311–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_108.
Der volle Inhalt der QuelleOno, Takahito, und Masayoshi Esashi. „Microfabricated Probe Technology“. In Encyclopedia of Nanotechnology, 2167–78. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_247.
Der volle Inhalt der QuelleJuarez-Martinez, Gabriela, Alessandro Chiolerio, Paolo Allia, Martino Poggio, Christian L. Degen, Li Zhang, Bradley J. Nelson et al. „Microfabricated Probe Technology“. In Encyclopedia of Nanotechnology, 1406–15. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_247.
Der volle Inhalt der QuelleBaborowski, J. „Microfabrication of Piezoelectric MEMS“. In Electroceramic-Based MEMS, 325–59. Boston, MA: Springer US, 2005. http://dx.doi.org/10.1007/0-387-23319-9_13.
Der volle Inhalt der QuelleJiménez-Martínez, Ricardo, und Svenja Knappe. „Microfabricated Optically-Pumped Magnetometers“. In Smart Sensors, Measurement and Instrumentation, 523–51. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-34070-8_17.
Der volle Inhalt der QuelleQin, Dong, Younan Xia, John A. Rogers, Rebecca J. Jackman, Xiao-Mei Zhao und George M. Whitesides. „Microfabrication, Microstructures and Microsystems“. In Topics in Current Chemistry, 1–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/3-540-69544-3_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Microfabricati"
Levitan, Jeremy A., Dan Good, Michael J. Sinclair und Joseph M. Jacobson. „Creation of Nanometer-Sized Features in Polysilicon Using Fusing“. In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/mems-23858.
Der volle Inhalt der QuellePark, Daniel S., Saade Bou-Mikael, Sean King, Karsten E. Thompson, Clinton S. Willson und Dimitris E. Nikitopoulos. „Design and Fabrication of Rock-Based Micromodel“. In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88501.
Der volle Inhalt der QuelleKandra, Deepak, und Ram V. Devireddy. „On the Possible Application of a Microscale Thermocouple to Measure Intercellular Ice Formation in Cells Embedded in an Extracellular Matrix“. In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60728.
Der volle Inhalt der QuelleDemiri, S., und S. Boedo. „Clearance Effects on the Impact Behavior of Large Aspect Ratio Silicon Journal Microbearings“. In STLE/ASME 2010 International Joint Tribology Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ijtc2010-41189.
Der volle Inhalt der QuelleCarretero, J. A., und K. S. Breuer. „Measurement and Modeling of the Flow Characteristics of Micro Disc Valves“. In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1120.
Der volle Inhalt der QuelleShao, Zhanjie, Carolyn L. Ren und Gerry Schneider. „Control of Laminar Flow and Mass Transport in Crossing Linked Microchannels for Micro Fabrication“. In ASME 3rd International Conference on Microchannels and Minichannels. ASMEDC, 2005. http://dx.doi.org/10.1115/icmm2005-75021.
Der volle Inhalt der QuelleHsu, C. P., N. E. Jewell-Larsen, A. C. Rollins, I. A. Krichtafovitch, S. W. Montgomery, J. T. Dibene und A. V. Mamishev. „Miniaturization of Electrostatic Fluid Accelerators“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13990.
Der volle Inhalt der QuelleKo, Jong Soo, Young-Ho Cho, Byung Man Kwak und Kwanhum Park. „Design and Fabrication of Piezoresistive Cantilever Microaccelerometer Arrays With a Symmetrically Bonded Proof-Mass“. In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-1267.
Der volle Inhalt der QuelleWang, Yaqiang, und Massood Tabib-Azar. „Fabrication and Characterization of Evanescent Microwave Probes Compatible With Atomic Force Microscope for Scanning Near-Field Microscopy“. In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33291.
Der volle Inhalt der QuelleMu¨ller, Norbert, und Luc G. Fre´chette. „Performance Analysis of Brayton and Rankine Cycle Microsystems for Portable Power Generation“. In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39628.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Microfabricati"
Jau, Yuan-Yu. Microfabricated Waveguide Atom Traps. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1396077.
Der volle Inhalt der QuelleWoodard, David W. Microfabrication Technology for Photonics. Fort Belvoir, VA: Defense Technical Information Center, Juni 1990. http://dx.doi.org/10.21236/ada225428.
Der volle Inhalt der QuelleJames C. Lund. Microfabricated Solid State Neutron Generators. Office of Scientific and Technical Information (OSTI), November 2000. http://dx.doi.org/10.2172/791322.
Der volle Inhalt der QuelleJames C. Lund. Microfabricated Solid State Neutron Generators. Office of Scientific and Technical Information (OSTI), September 2001. http://dx.doi.org/10.2172/791324.
Der volle Inhalt der QuelleSpahn, Olga Blum, Adam M. Rowen, Michael Joseph Cich, Gregory Merwin Peake, Christian L. Arrington, Thomas J. Nash, John Frederick Klem und Dustin Heinz Romero. Microfabricated wire arrays for Z-pinch. Office of Scientific and Technical Information (OSTI), Oktober 2008. http://dx.doi.org/10.2172/945909.
Der volle Inhalt der QuelleBandyopadhyay, P. R. A Microfabricated Surface for Turbulence Control. Fort Belvoir, VA: Defense Technical Information Center, November 1993. http://dx.doi.org/10.21236/ada637044.
Der volle Inhalt der QuellePitts, W. K., K. M. Walsh, H. L. Cox und Jr. Development of Microfabricated Radiation Sensor Systems. Fort Belvoir, VA: Defense Technical Information Center, November 2000. http://dx.doi.org/10.21236/ada392846.
Der volle Inhalt der QuelleCowan, Benjamin M. Microfabrication of Laser-Driven Accelerator Structures. Office of Scientific and Technical Information (OSTI), April 2003. http://dx.doi.org/10.2172/812999.
Der volle Inhalt der QuelleRevelle, Melissa. Microfabricated Devices and Ion Trapping Capabilities. Office of Scientific and Technical Information (OSTI), Juli 2022. http://dx.doi.org/10.2172/1876626.
Der volle Inhalt der QuelleSASAKI, DARRYL Y., JULIE A. LAST, BRUCE BONDURANT, TINA A. WAGGONER, C. JEFFREY BRINKER, SHANALYN A. KEMME, JOEL R. WENDT et al. Nanostructured Materials Integrated in Microfabricated Optical Devices. Office of Scientific and Technical Information (OSTI), Dezember 2002. http://dx.doi.org/10.2172/808600.
Der volle Inhalt der Quelle