Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Mineral ion exchanger“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Mineral ion exchanger" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Mineral ion exchanger"
Salinas Rodríguez, Eleazar, Edgar A. Cárdenas-Reyes, Francisco R. Barrientos-Hernández, Javier Flores-Badillo, M. P. Gutiérrez-Amador, Ariadna Sánchez-Castillo, Otilio A. Acevedo-Sandoval, Eduardo Cerecedo-Sáenz und Juan Hernández-Ávila. „Ce and Nd Extraction by Cationic Exchange, Using Bentonite, Diatomite, and Eggshell—Preliminary Study“. Minerals 13, Nr. 6 (29.05.2023): 735. http://dx.doi.org/10.3390/min13060735.
Der volle Inhalt der QuellePonomareva, Maria, Olga Cheremisina, Yulia Mashukova und Elena Lukyantseva. „Increasing the efficiency of rare earth metal recovery from technological solutions during processing of apatite raw materials“. Записки Горного института 252 (17.12.2021): 1–10. http://dx.doi.org/10.31897/pmi.2021.6.13.
Der volle Inhalt der QuelleEl-Sweify, Fatma H., Ehab A. A. El-Shazly und Shreen M. Salama. „Comparison of some organic and inorganic ion exchangers concerning the sorption of Ce(III), Te(IV), Zr(IV), Hf(IV) and Nb(V)“. Radiochimica Acta 106, Nr. 3 (28.03.2018): 207–16. http://dx.doi.org/10.1515/ract-2017-2789.
Der volle Inhalt der QuelleAliyah Shahab und Indah Agus Setiorini. „EFEKTIFITAS VOLUME RESIN ION EXCHANGER TERHADAP KAPASITAS PERTUKARAN ION DAN WAKTU JENUH PADA UNIT DEMIN PLANT DI PT PLN (PERSERO) UPDK KERAMASAN“. Journal of Innovation Research and Knowledge 2, Nr. 9 (25.02.2023): 3791–802. http://dx.doi.org/10.53625/jirk.v2i9.5407.
Der volle Inhalt der QuelleDe Luca, Pierantonio, Ivano Bernaudo, Rosangela Elliani, Antonio Tagarelli, Jànos B.Nagy und Anastasia Macario. „Industrial Waste Treatment by ETS-10 Ion Exchanger Material“. Materials 11, Nr. 11 (18.11.2018): 2316. http://dx.doi.org/10.3390/ma11112316.
Der volle Inhalt der QuelleVasil’eva, Vera I., Elmara M. Akberova, Ali M. Saud und Victor I. Zabolotsky. „Current-Voltage Characteristics of Membranes with Different Cation-Exchanger Content in Mineral Salt—Neutral Amino Acid Solutions under Electrodialysis“. Membranes 12, Nr. 11 (02.11.2022): 1092. http://dx.doi.org/10.3390/membranes12111092.
Der volle Inhalt der QuelleRathore, Sawai Singh, Archana Joshi, Hanuman . und Vikal Gupta. „Synthesis and environmental application of TTCHEA resin in effluent handling“. Research Journal of Chemistry and Environment 26, Nr. 11 (25.10.2022): 63–67. http://dx.doi.org/10.25303/2611rjce063067.
Der volle Inhalt der QuelleSeptiyani, Elda, Yuniati Zevi und Nur Novilina Arifianingsih. „SUSTAINABLE REGENERATION OF MORDENITE MINERAL AS ION EXCHANGER FOR REMOVAL IRON AND MANGANESE IN GROUNDWATER“. MATTER: International Journal of Science and Technology 6, Nr. 1 (07.07.2020): 147–60. http://dx.doi.org/10.20319/mijst.2020.61.147160.
Der volle Inhalt der QuelleKubová, J., V. Nevoral und V. Streško. „Determination of beryllium trace contents in mineral waters after preconcentration on a chelating ion-exchanger“. Fresenius' Journal of Analytical Chemistry 348, Nr. 4 (April 1994): 287–90. http://dx.doi.org/10.1007/bf00324036.
Der volle Inhalt der QuelleZhanabayeva, A. K., G. K. Bishimbayeva, D. S. Zhumabayeva, A. M. Nalibayeva und Ye N. Abdikalykov. „A technology for producing electrode materials for lithium-ion batteries from Kazakhstan spodumene raw materials“. Proceedings of Universities. Applied Chemistry and Biotechnology 12, Nr. 1 (01.04.2022): 141–52. http://dx.doi.org/10.21285/2227-2925-2022-12-1-141-152.
Der volle Inhalt der QuelleDissertationen zum Thema "Mineral ion exchanger"
Willans, Simon Mark. „Modelling in the analysis of ion exchange between blood and bone“. Thesis, University of Edinburgh, 1988. http://hdl.handle.net/1842/27052.
Der volle Inhalt der QuelleMilcent, Théo. „Mise en place d'une nouvelle méthodologie d'évaluation d'un échangeur d'ions minéral du point de vue de sa sélectivité : Cas particulier de l'optimisation structurale et microstructurale d'un silicotitanate cristallin (CST), appliqué à la décontamination d'effluents simultanément contaminés en Sr2+ et Cs+“. Electronic Thesis or Diss., Montpellier, Ecole nationale supérieure de chimie, 2022. http://www.theses.fr/2022ENCM0010.
Der volle Inhalt der QuelleAlumino, titano and zircono-silicates zeolitic materials exhibit good performances in applications such as catalysis, gas separation and confinement. In addition, these kind of materials has been successfully used in different fields like petrochemistry, agriculture, medical, energy storage and nuclear decontamination. Their ion exchange properties make them very selective for radionuclides extraction (e.g. cesium or strontium) from wastewater treatment. Their composition (Al/Si, Ti/Si, Zr/Si ratio; “metal” nature and charge; labile ion nature, charge, size and concentration) and their framework structure (amorphous, 3D cage or tunnel) affect the ion exchange mechanism (i.e. kinetics, specificity, stability). These parameters may also modify the sorption capacity and the ion selectivity. In the present PhD, the relationship between structure and properties of several silicates will be studied in order to better understand their sorption mechanisms. To this end, the synthesis of different silicates will be performed and optimized. Then, their structures, morphologies and compositions will be analyzed by the application of different characterization techniques. Finally, this materials will be implemented to effluent treatments (i.e. model effluent and simulate real effluent) to evaluate their performances and find the connection between the structural and textural properties
Jaynes, William Frederick. „Characterization and separation of soil clay minerals using ion exchange, lithium charge reduction, and density gradient techniques /“. The Ohio State University, 1988. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487592050230268.
Der volle Inhalt der QuelleOyetola, Samuel. „Synthese et etude des composes a**(i)m**(v)p::(2)o::(8) (a = k, rb, cs; m = sb, nb, mo, ta) et des acides echangeurs ioniques hm**(v)(po::(4))::(2),xh::(2)o (m = sb, ta), nouveaux types de luminophores potentiels : les phases (m'**(iii)::(1/2)m**(v)::(1/2))p::(2)o::(7) (m'=sb, bi, ln; m=sb, nb, ta)“. Nantes, 1988. http://www.theses.fr/1988NANT2008.
Der volle Inhalt der QuelleGédéon, Antoine. „Contribution a l'etude par rmn (**(1)h et **(129)xe) des zeolithes my (m = na**(+), ni**(2+), cu**(2+) et co**(2+)) : adsorption d'eau et d'ammoniac“. Paris 6, 1987. http://www.theses.fr/1987PA066390.
Der volle Inhalt der QuelleEl, Make Mahmoud. „Base-cations in relation to weathering of phyllosilicates and forest management in Swedish forest ecosystems /“. Uppsala : Swedish Univ. of Agricultural Sciences (Sveriges lantbruksuniv.), 2000. http://epsilon.slu.se/avh/2000/91-576-5899-4.pdf.
Der volle Inhalt der QuelleSilva, Francisco das Chagas Beserra da. „Estudo da mistura comercial dolomita-quartzo, dopada com Hg(I), Cd(II) e Cr(III), para adsor??o de H2S“. Universidade Federal do Rio Grande do Norte, 2013. http://repositorio.ufrn.br:8080/jspui/handle/123456789/17715.
Der volle Inhalt der QuelleThe present work was to carry out a study on the adsorption of hydrogen sulfide (H2S) in arrays synthesized from a commercial clay mineral formed by a mixture of dolomite and quartz. To produce the ion exchange matrix were made using aqueous solutions of salts of cobalt II chloride hexahydrate (CoCl2.6H2O) II cadmium nitrate tetrahydrate (Cd (NO3)2.4H2O) I mercuric chloride (HgCl) nitrate and chromium III pentahydrate (Cr (NO3)3.5H2O). The arrays were subjected to hydrogen sulphide gas passage for one hour. To check the amount of gas adsorbed was used gravimetric process. The best result was in the adsorption matrix doped with cadmium and the solution retained for a longer time than the largest amount of H2S was the cobalt matrix. The matrix unmodified exhibited poor adsorption capacity. The characterization of the matrices were used XRD, XRF and IV. Mother with cadmium showed a high capacity in ion exchange, because the percentage of cadmium increased from 0% to 81.38% by replacing atoms of calcium and silicon which increased from 96.54% to 17.56% and 15, 72% to 0.32%, respectively, but also the best performance in adsorption of H2S adsorbing 11.89507 mg per gram of matrix
O presente trabalho teve como finalidade realizar um estudo sobre a capacidade de adsor??o de g?s sulf?drico(H2S) em matrizes sintetizadas a partir de um argilomineral comercial formado por uma mistura de dolomita e quartzo. Para produzir as matrizes foram feitas trocas i?nicas utilizando as solu??es aquosas dos sais: cloreto de cobalto II hexaidratado(CoCl2.6H2O), nitrato de c?dmio II tetraidratado (Cd(NO3)2.4H2O), cloreto de merc?rio I (HgCl) e nitrato de cromo III pentaidratado(Cr(NO3)3.5H2O). As matrizes foram submetidas a passagem de g?s sulf?drico durante uma hora. Para verificar a quantidade de g?s adsorvido foi utilizado o processo de gravimetria. O melhor resultado na adsor??o foi com a matriz dopada com a solu??o de c?dmio e a que reteve por mais tempo a maior quantidade de H2S, foi a matriz com cobalto. A matriz n?o modificada apresentou uma fraca capacidade de adsor??o. Na caracteriza??o das matrizes foram utilizadas an?lises de DRX, FRX e IV. A matriz com c?dmio apresentou uma alta capacidade na troca i?nica, pois a porcentagem de c?dmio passou de 0% para 81,38%, substituindo ?tomos de c?lcio e de sil?cio que passaram de 96,54% para 17,56% e de 15,72% para 0,32%, respectivamente, como tamb?m, o melhor desempenho na adsor??o, adsorvendo 11,89507mg de H2S por grama de matriz
Iwalewa, Tajudeen. „Coupling source term, mineral reactivity and flow in radionuclide transport“. Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/265633.
Der volle Inhalt der QuelleIvanaj, Silvester. „Rôle de l'électrochimie au cours de la dissolution sélective des minerais et/ou des concentrés de chalcopyrite“. Vandoeuvre-les-Nancy, INPL, 1995. http://docnum.univ-lorraine.fr/public/INPL_T_1995_IVANAJ_S.pdf.
Der volle Inhalt der QuellePark, Sang-Hoon. „Contribution a l'etude du comportement de materiaux colmatants dans une fissure : experiences en laboratoire avec une montmorillonite sodique dans une fissure simulee“. Paris, ENMP, 1987. http://www.theses.fr/1987ENMP0043.
Der volle Inhalt der QuelleBücher zum Thema "Mineral ion exchanger"
Chiou, Wen-An, Helmut Coutelle, Andreas Decher, Michael Dörschug, Reiner Dohrmann, Albert Gilg, Stephan Kaufhold et al. Bentonites -. Herausgegeben von Stephan Kaufhold. E. Schweizerbart Science Publishers, 2021. http://dx.doi.org/10.1127/bentonites/9783510968596.
Der volle Inhalt der QuelleXavier, Constantino. Unbreakable Bond. Herausgegeben von David M. Malone, C. Raja Mohan und Srinath Raghavan. Oxford University Press, 2010. http://dx.doi.org/10.1093/oxfordhb/9780198743538.013.41.
Der volle Inhalt der QuelleSolimano, Andres, und Diego Calderón Guajardo. The Copper Sector, Fiscal Rules, and Stabilization Funds in Chile. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198817369.003.0010.
Der volle Inhalt der QuelleGill, Kristina M., Mikael Fauvelle und Jon M. Erlandson, Hrsg. An Archaeology of Abundance. University Press of Florida, 2019. http://dx.doi.org/10.5744/florida/9780813056166.001.0001.
Der volle Inhalt der QuelleKnopf, Thomas, Alexandra David, Dieter Rehfeld, Frank Hillebrandt, Constance von Rüden, Michael Roos, Silviane Scharl et al. The RITaK Conferences. 2013-2014: Raw Materials, Innovation, Technology of Ancient Cultures - RITaK 1. Herausgegeben von Petra Eisenach, Thomas Stöllner und Arne Windler. Deutsches Bergbau-Museum Bochum, 2017. http://dx.doi.org/10.46586/dbm.139.
Der volle Inhalt der QuelleBuchteile zum Thema "Mineral ion exchanger"
Turchkova, Anna G., Igor V. Pekov, Inna S. Lykova, Nikita V. Chukanov und Vasiliy O. Yapaskurt. „Delhayelite: Ion Leaching and Ion Exchange“. In Minerals as Advanced Materials II, 221–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20018-2_22.
Der volle Inhalt der QuelleHudson, M. J. „Extraction of Priority Pollutants Using Inorganic Ion Exchangers“. In Mineral Processing and the Environment, 223–38. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-2284-1_11.
Der volle Inhalt der QuelleDowney, Donald D. „Ion Exchange Resin—Pilot and Resin Testing“. In The Minerals, Metals & Materials Series, 2093–106. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95022-8_175.
Der volle Inhalt der QuelleKhamizov, Ruslan, Dmitri N. Muraviev und Abraham Warshawsky. „Recovery of Valuable Mineral Components from Seawater by Ion-Exchange and Sorption Methods“. In Ion Exchange and Solvent Extraction, 93–148. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003208846-3.
Der volle Inhalt der QuelleGrigorieva, Arina A., Igor V. Pekov, Natalia V. Zubkova, Anna G. Turchkova und Dmitry Yu Pushcharovsky. „K- and Rb-Exchanged Forms of Hilairite: Evolution of Crystal-Chemical Characteristics with the Increase of Ion Exchange Temperature“. In Minerals as Advanced Materials II, 181–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20018-2_17.
Der volle Inhalt der QuelleMaes, A., und A. Cremers. „Highly Selective Ion Exchange in Clay Minerals and Zeolites“. In ACS Symposium Series, 254–95. Washington D.C.: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0323.ch013.
Der volle Inhalt der QuelleKryst, Katerina, und Phillip (Rocky) Simmons. „Antimony and Bismuth Control in Copper Electrolyte by Ion Exchange“. In The Minerals, Metals & Materials Series, 2107–11. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95022-8_176.
Der volle Inhalt der QuelleSoldenhoff, Karin, James E. Quinn, Tomasz Safinski, Keith Bowes und Merrill Ford. „Breakthrough in Uranium Recovery from Saline Liquors by Ion Exchange“. In The Minerals, Metals & Materials Series, 2137–47. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95022-8_179.
Der volle Inhalt der QuelleYoshikawa, N., T. Sumi, S. Mikoshiba und S. Taniguchi. „Exchange of Cs Ion in Clay Minerals by Microwave Application“. In Ceramic Transactions Series, 347–55. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118995433.ch34.
Der volle Inhalt der Quellevan Deventer, Johanna, und Yoshinari Mori. „The Use of Ion Exchange to Improve Revenue via the Removal of Impurities“. In The Minerals, Metals & Materials Series, 2149–59. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95022-8_180.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Mineral ion exchanger"
Polito, Aure´lie. „Waste Treatment by Selective Mineral Ion Exchanger“. In The 11th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2007. http://dx.doi.org/10.1115/icem2007-7340.
Der volle Inhalt der QuelleBai, Shixun, Jan Kubelka und Mohammad Piri. „Toward the Rational Design of Chemical Formulations for EOR from Carbonates: Molecular–Level Understanding of Carbonate Wettability and its Reversal by Surfactants and Ions“. In Abu Dhabi International Petroleum Exhibition & Conference. SPE, 2021. http://dx.doi.org/10.2118/207340-ms.
Der volle Inhalt der QuelleAmaya, T., A. Mukunoki, M. Shibuya und Hiroshi Kodama. „Leaching of Iodide Ion From BiPbO2I Under Reducing Conditions“. In ASME 2001 8th International Conference on Radioactive Waste Management and Environmental Remediation. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/icem2001-1299.
Der volle Inhalt der QuelleЩербакова, Наталья, Заур Хапцев, Андрей Захаревич, Сергей Вениг und Виктор Сержантов. „Biotechnological bases of use of natural mineral glauconite in soil-forming processes at development of technogenic massifs and liquidation of enterprises on extraction of minerals“. In Mineralogical and technological appraisal of new types of mineral products. Petrozavodsk: Karelian Research Center of RAS, 2019. http://dx.doi.org/10.17076/tm13_9.
Der volle Inhalt der QuelleHu, Yisheng, Eric Mackay, Oleg Ishkov und Alistair Strachan. „Predicted and Observed Evolution of Produced Brine Compositions, and Implications for Scale Management“. In SPE International Oilfield Scale Conference and Exhibition. SPE, 2014. http://dx.doi.org/10.2118/spe-169765-ms.
Der volle Inhalt der QuelleSilveira de Araujo, Isa, und Zoya Heidari. „Quantification of Adsorption of Water on Clay Surfaces and Electrical Double Layer Properties Using Molecular Simulations“. In 2022 SPWLA 63rd Annual Symposium. Society of Petrophysicists and Well Log Analysts, 2022. http://dx.doi.org/10.30632/spwla-2022-0005.
Der volle Inhalt der QuelleBurlakovs, Juris, Ruta Ozola-Davidane und Maris Klavins. „INNOVATIVE COMPOSITE SORBENTS FOR ORGANIC AND INORGANIC POLLUTANTS REMOVAL FROM AQUEOUS SOLUTIONS IN LANDFILL LEACHATES“. In International Scientific Conference “EcoBalt 2021”. University of Latvia Press, 2021. http://dx.doi.org/10.22364/isceb.2021.01.
Der volle Inhalt der QuelleAndersen, Pål Østebø, Sander Sunde Herlofsen, Reidar Inge Korsnes und Mona Wetrhus Minde. „Flow-Through Experiments of Reactive Ba-Sr-Mg Brines in Mons Chalk at North Sea Reservoir Temperature at Different Injection Rates“. In SPE EuropEC - Europe Energy Conference featured at the 84th EAGE Annual Conference & Exhibition. SPE, 2023. http://dx.doi.org/10.2118/214367-ms.
Der volle Inhalt der QuelleDisu, Botelho, Roozbeh Rafati, Amin Sharifi Haddad und Nabihah Fierus. „Lithium Extraction From North Sea Oilfield Brines Using Ion Exchange Membranes“. In SPE Offshore Europe Conference & Exhibition. SPE, 2023. http://dx.doi.org/10.2118/215585-ms.
Der volle Inhalt der QuelleXie, Y. T., X. B. Zheng, L. P. Huang und C. X. Ding. „In Vitro Cytocompatibility of Plasma-Sprayed Dicalcium Silicate/Zirconia Composite Coatings“. In ITSC 2012, herausgegeben von R. S. Lima, A. Agarwal, M. M. Hyland, Y. C. Lau, C. J. Li, A. McDonald und F. L. Toma. ASM International, 2012. http://dx.doi.org/10.31399/asm.cp.itsc2012p0699.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Mineral ion exchanger"
Avnimelech, Yoram, Richard C. Stehouwer und Jon Chorover. Use of Composted Waste Materials for Enhanced Ca Migration and Exchange in Sodic Soils and Acidic Minespoils. United States Department of Agriculture, Juni 2001. http://dx.doi.org/10.32747/2001.7575291.bard.
Der volle Inhalt der QuelleZavarin, M. M4SF-19LL010301082-Surface Complexation and Ion Exchange Database Development Phase 1: Clay Minerals. Office of Scientific and Technical Information (OSTI), Juni 2019. http://dx.doi.org/10.2172/1529826.
Der volle Inhalt der QuelleZavarin, M., E. Chang, S. Han und H. Wainwright. M4SF-23LL010301062-Surface Complexation/Ion Exchange Hybrid Model for Radionuclide Sorption to Clay Minerals. Office of Scientific and Technical Information (OSTI), Juli 2023. http://dx.doi.org/10.2172/1994028.
Der volle Inhalt der QuelleDesbarats, A. J., und J. B. Percival. Hydrogeochemistry of mine tailings from a carbonatite-hosted Nb-REE deposit, Oka, Quebec, Canada. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331256.
Der volle Inhalt der QuelleMikula, R. J., I. S. Parsons, V. A. Munoz, W. W. Lam, C. Payette und K. C. McAuley. High-temperature settling of bitumen from Aostra's underground test facility. Natural Resources Canada/CMSS/Information Management, 1990. http://dx.doi.org/10.4095/331489.
Der volle Inhalt der QuelleLeece, A., und C. Jiang. A preliminary techno-economic assessment of lithium extraction from flowback and produced water from unconventional shale and tight hydrocarbon operations in Western Canada. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331879.
Der volle Inhalt der Quelle