Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Mixed hardening“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Mixed hardening" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Mixed hardening"
Wu, Ze Yu, Xin Li Bai und Bing Ma. „3-D Elastic-Plastic Constitutive Relationship of Mixed Hardening“. Applied Mechanics and Materials 249-250 (Dezember 2012): 927–30. http://dx.doi.org/10.4028/www.scientific.net/amm.249-250.927.
Der volle Inhalt der QuelleRentmeester, Rikard, und Larsgunnar Nilsson. „On mixed isotropic-distortional hardening“. International Journal of Mechanical Sciences 92 (März 2015): 259–68. http://dx.doi.org/10.1016/j.ijmecsci.2014.09.013.
Der volle Inhalt der QuelleCai, Xing Zhou, Lin Feng Wang, Shi Yan Zhao, Bao Feng Guo und Yu Xin Zhu. „Research on the Reverse Loading Hardening Model of the X80 Pipeline Steel“. Advanced Materials Research 750-752 (August 2013): 370–74. http://dx.doi.org/10.4028/www.scientific.net/amr.750-752.370.
Der volle Inhalt der QuelleRezaiee‐Pajand, Mohammad, Cyrus Nasirai und Mehrzad Sharifian. „Integration of nonlinear mixed hardening models“. Multidiscipline Modeling in Materials and Structures 7, Nr. 3 (27.09.2011): 266–305. http://dx.doi.org/10.1108/1536-540911178252.
Der volle Inhalt der QuelleAbduljauwad, Sahel N., Isa M. Al‐Buraim und Hamdan N. Al‐Ghamedy. „Mixed Hardening, Three‐Invariants Dependent Cap Model“. Journal of Engineering Mechanics 118, Nr. 3 (März 1992): 620–37. http://dx.doi.org/10.1061/(asce)0733-9399(1992)118:3(620).
Der volle Inhalt der QuelleBathe, Klaus-Jürgen, und Francisco Javier Montáns. „On modeling mixed hardening in computational plasticity“. Computers & Structures 82, Nr. 6 (März 2004): 535–39. http://dx.doi.org/10.1016/j.compstruc.2003.08.010.
Der volle Inhalt der QuelleChen, Guang, Changcai Zhao, Haiwei Shi, Qingxing Zhu, Guoyi Shen, Zheng Liu, Chenyang Wang und Duan Chen. „Research on the 2A11 Aluminum Alloy Sheet Cyclic Tension–Compression Test and Its Application in a Mixed Hardening Model“. Metals 13, Nr. 2 (26.01.2023): 229. http://dx.doi.org/10.3390/met13020229.
Der volle Inhalt der QuelleMuránsky, Ondrej, Cory J. Hamelin, Mike C. Smith, Phillip J. Bendeich und Lyndon Edwards. „The Role of Plasticity Theory on the Predicted Residual Stress Field of Weld Structures“. Materials Science Forum 772 (November 2013): 65–71. http://dx.doi.org/10.4028/www.scientific.net/msf.772.65.
Der volle Inhalt der QuelleTeng-xi, Liu, Huang Shi-qing und Fu Yi-ming. „The constitutive equations for mixed hardening orthotropic material“. Applied Mathematics and Mechanics 24, Nr. 2 (Februar 2003): 216–20. http://dx.doi.org/10.1007/bf02437628.
Der volle Inhalt der QuelleMo, Yafei, Rou Du und Xiaoming Liu. „Effect of mixed plastic hardening on the cyclic contact between a sphere and a rigid flat“. Journal of Physics: Conference Series 2285, Nr. 1 (01.06.2022): 012018. http://dx.doi.org/10.1088/1742-6596/2285/1/012018.
Der volle Inhalt der QuelleDissertationen zum Thema "Mixed hardening"
Cardoso, Adilson Silva. „Design and characterization of BiCMOS mixed-signal circuits and devices for extreme environment applications“. Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53099.
Der volle Inhalt der QuelleThuillet, Stéphanie. „Modélisation de lois de comportement pour le micro-formage de tôles ultra-fines“. Electronic Thesis or Diss., Lorient, 2023. http://www.theses.fr/2023LORIS655.
Der volle Inhalt der QuelleMiniaturization is now an integral part of the current issues of our society. To meet industries expectation which are looking for more small-sized components with shorter manufacturing deadlines, plastic deformation processes have proven to be the most effective. To avoid a lot of experimental tests, simulation of these processes is an important alternative. The goal of this thesis is to define a behaviour law dedicated to ultra-thin sheets of copper alloys which are present in industries and particularly in the watchmaking industry. An experimental campaign is thus carried out to notice the behaviour of a of 0,25 mm thick copper sheet and of a 0,20 mm thick copper beryllium alloy. The micro-structural characterisation makes it possible to validate the framework of ultra-thin sheets thanks to the study of the number and size of the grains in the thickness. Experimental tests highlight the isotropic behaviour of copper. The CuBe has an anisotropic behaviour and a predominance of kinematic work hardening. Regarding to the experimental observations, two models using an elastoviscoplastic law are proposed and compared, one within the framework of associated plasticity and the other employing non-associated plasticity. These models especially take into account a mixed work hardening. Material parameters are then identified using a minimisation algorithm. The different analyses on the simulation and identification methods indicate that the non-associated plasticity model is the most suitable. Simulations and identifications on representative volume elements are sufficient in our case. Finally, the several forming processes are studied and simulated thanks to the implementation of behaviour laws in a computer code by the finite element method. They highlight the development of the proposed model allowing to take into account a mixed work hardening. This model can therefore be used for the simulation of forming processes of ultra-thin sheets, especially of small-sized copper alloys under complex stresses
ADHIKARI, THAM. „QUALITY AND DURABILITY OF RUBBERIZED ASPHALT CEMENT AND WARM RUBBERIZED ASPHALT CEMENT“. Thesis, 2013. http://hdl.handle.net/1974/7921.
Der volle Inhalt der QuelleThesis (Master, Chemistry) -- Queen's University, 2013-04-24 22:54:20.07
Buchteile zum Thema "Mixed hardening"
Galdos, Lander, Julen Agirre, Nagore Otegi, Joseba Mendiguren und Eneko Saenz de Argandoña. „Simulation of Cold Forging Processes Using a Mixed Isotropic-Kinematik Hardening Model“. In Forming the Future, 773–87. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75381-8_64.
Der volle Inhalt der QuelleHajiesmaeili, Amir, und Emmanuel Denarié. „Effect of Fiber Orientation and Specimen Thickness on the Tensile Response of Strain Hardening UHPFRC Mixes with Reduced Embodied Energy“. In Strain-Hardening Cement-Based Composites, 324–32. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1194-2_38.
Der volle Inhalt der Quelledi Prisco, C., R. Nova und J. Lanier. „A Mixed Isotropic-Kinematic Hardening Constitutive Law for Sand“. In Modern Approaches to Plasticity, 83–124. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-89970-5.50010-8.
Der volle Inhalt der QuelleRomero, E., und C. Jommi. „Mixed isotropic-rotational hardening to model the deformational response of unsaturated compacted soils“. In Unsaturated Soils. Advances in Geo-Engineering, 617–23. Taylor & Francis, 2008. http://dx.doi.org/10.1201/9780203884430.ch83.
Der volle Inhalt der QuelleLee, J. H. „On Numerical Integration of a Class of Pressure-Sensitive Plasticity Models with Mixed Hardening“. In Advances in Plasticity 1989, 621–24. Elsevier, 1989. http://dx.doi.org/10.1016/b978-0-08-040182-9.50152-1.
Der volle Inhalt der QuelleXiaying, Mu, und Li Zhouli. „EXACT INTEGRAL METHOD FOR CONSTITUTIVE EQUATIONS OF THE MIXED HARDENING MODEL UNDER CYCLIC LOADING“. In Advances in Engineering Plasticity and its Applications, 659–64. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-89991-0.50089-5.
Der volle Inhalt der QuelleAmorosi, A. „Implicit integration of a new hyperelastic mixed isotropic-kinematic hardening model for structured clays“. In Numerical Methods in Geotechnical Engineering, 121–25. Taylor & Francis, 2006. http://dx.doi.org/10.1201/9781439833766.ch17.
Der volle Inhalt der QuelleNOWLIN, NATHAN, JOHN BAILEY, BOB TURFLER und DAVE ALEXANDER. „A TOTAL-DOSE HARDENING-BY-DESIGN APPROACH FOR HIGH-SPEED MIXED-SIGNAL CMOS INTEGRATED CIRCUITS“. In Selected Topics in Electronics and Systems, 83–94. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812794703_0007.
Der volle Inhalt der QuelleCantor, Brian. „The Burgers Vector“. In The Equations of Materials, 226–48. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198851875.003.0011.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Mixed hardening"
Li, Qun, Miao Jin und Zhu Yuxin. „Analysis on sheet cyclic plastic deformation using mixed hardening model“. In THE 11TH INTERNATIONAL CONFERENCE ON NUMERICAL METHODS IN INDUSTRIAL FORMING PROCESSES: NUMIFORM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4806940.
Der volle Inhalt der QuelleMullins, Jonathan, und Jens Gunnars. „Welding Simulation: Relationship Between Welding Geometry and Determination of Hardening Model“. In ASME 2012 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/pvp2012-78599.
Der volle Inhalt der QuelleSureau, Mathieu, Russell Stevens, Marco Leuenberger, Nadia Rezzak und Dorian Johnson. „TID, ELDRS and SEE Hardening and Testing on Mixed Signal Telemetry LX7730 Controller“. In 2017 IEEE Nuclear & Space Radiation Effects Conference (NSREC): Radiation Effects Data Workshop (REDW). IEEE, 2017. http://dx.doi.org/10.1109/nsrec.2017.8115478.
Der volle Inhalt der QuelleSureau, Mathieu, Russell Stevens, Marco Leuenberger, Nadia Rezzak, Dorian Johnson und Kathy Zhang. „Extended TID, ELDRS and SEE Hardening and Testing on Mixed Signal Telemetry LX7730 Controller“. In 2017 17th European Conference on Radiation and Its Effects on Components and Systems (RADECS). IEEE, 2017. http://dx.doi.org/10.1109/radecs.2017.8696179.
Der volle Inhalt der QuelleYanagida, Nobuyoshi. „Study on Stress-Strain Relation for Type 316L Stainless Steel Using Mixed Hardening Law“. In ASME 2008 Pressure Vessels and Piping Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/pvp2008-61404.
Der volle Inhalt der QuelleChow, C. L., und X. J. Yang. „A Generalized Mixed Kinematic-Isotropic Hardening Plastic Model Coupled With Anisotropic Damage for Sheet Metal Forming“. In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33019.
Der volle Inhalt der QuelleNovak, Jiri. „Ductile Fracture of Ferritic Steels: Correlation of KIIc/KIc Ratio and Strain Hardening Curve“. In ASME 2002 Pressure Vessels and Piping Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/pvp2002-1342.
Der volle Inhalt der QuelleGhavam, Kamyar, und Reza Naghdabadi. „Corotational Analysis of Elastic-Plastic Hardening Materials Based on Different Kinematic Decompositions“. In ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93442.
Der volle Inhalt der QuelleDuchêne, Laurent. „Analysis of Texture Evolution and Hardening Behavior during Deep Drawing with an Improved Mixed Type FEM Element“. In NUMISHEET 2005: Proceedings of the 6th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Process. AIP, 2005. http://dx.doi.org/10.1063/1.2011254.
Der volle Inhalt der QuelleQiao, Dongxiao, Zhili Feng, Wei Zhang, Yanli Wang und Paul Crooker. „Modeling of Weld Residual Plastic Strain and Stress in Dissimilar Metal Butt Weld in Nuclear Reactors“. In ASME 2013 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/pvp2013-98081.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Mixed hardening"
Ramakrishnan, Aravind, Ashraf Alrajhi, Egemen Okte, Hasan Ozer und Imad Al-Qadi. Truck-Platooning Impacts on Flexible Pavements: Experimental and Mechanistic Approaches. Illinois Center for Transportation, November 2021. http://dx.doi.org/10.36501/0197-9191/21-038.
Der volle Inhalt der QuelleLOW-CYCLE FATIGUE PROPERTIES OF AUSTENITIC STAINLESS STEEL S30408 UNDER LARGE PLASTIC STRAIN AMPLITUDE. The Hong Kong Institute of Steel Construction, März 2022. http://dx.doi.org/10.18057/ijasc.2022.18.1.10.
Der volle Inhalt der Quelle