Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „MMWAVE PROPAGATION“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "MMWAVE PROPAGATION" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "MMWAVE PROPAGATION"
Al-Saman, Ahmed, Michael Cheffena, Olakunle Elijah, Yousef A. Al-Gumaei, Sharul Kamal Abdul Rahim und Tawfik Al-Hadhrami. „Survey of Millimeter-Wave Propagation Measurements and Models in Indoor Environments“. Electronics 10, Nr. 14 (11.07.2021): 1653. http://dx.doi.org/10.3390/electronics10141653.
Der volle Inhalt der QuelleLiu, Baobao, Pan Tang, Jianhua Zhang, Yue Yin, Guangyi Liu und Liang Xia. „Propagation Characteristics Comparisons between mmWave and Visible Light Bands in the Conference Scenario“. Photonics 9, Nr. 4 (01.04.2022): 228. http://dx.doi.org/10.3390/photonics9040228.
Der volle Inhalt der QuelleRodríguez-Corbo, Fidel, Leyre Azpilicueta, Mikel Celaya-Echarri, Peio López-Iturri, Imanol Picallo, Francisco Falcone und Ana Alejos. „Millimeter Wave Spatial Channel Characterization for Vehicular Communications“. Proceedings 42, Nr. 1 (14.11.2019): 64. http://dx.doi.org/10.3390/ecsa-6-06562.
Der volle Inhalt der QuelleRodríguez-Corbo, Fidel Alejandro, Leyre Azpilicueta, Mikel Celaya-Echarri, Peio Lopez-Iturri, Ana V. Alejos und Francisco Falcone. „Deterministic Propagation Approach for Millimeter-Wave Outdoor Smart Parking Solution Deployment“. Engineering Proceedings 2, Nr. 1 (14.11.2020): 81. http://dx.doi.org/10.3390/ecsa-7-08231.
Der volle Inhalt der QuelleGulfam, Sardar, Syed Nawaz, Konstantinos Baltzis, Abrar Ahmed und Noor Khan. „Characterization of Fading Statistics of mmWave (28 GHz and 38 GHz) Outdoor and Indoor Radio Propagation Channels“. Technologies 7, Nr. 1 (09.01.2019): 9. http://dx.doi.org/10.3390/technologies7010009.
Der volle Inhalt der QuelleRahayu, Ismalia, und Ahmad Firdausi. „5G Channel Model for Frequencies 28 GHz, 73 GHz and 4 GHz with Influence of Temperature in Bandung“. Jurnal Teknologi Elektro 13, Nr. 2 (31.05.2022): 94. http://dx.doi.org/10.22441/jte.2022.v13i2.006.
Der volle Inhalt der QuelleDos Anjos, Andre Antonio, Tiago Reis Rufino Marins, Carlos Rafael Nogueira Da Silva, Vicent Miquel Rodrigo Penarrocha, Lorenzo Rubio, Juan Reig, Rausley Adriano Amaral De Souza und Michel Daoud Yacoub. „Higher Order Statistics in a mmWave Propagation Environment“. IEEE Access 7 (2019): 103876–92. http://dx.doi.org/10.1109/access.2019.2930931.
Der volle Inhalt der QuelleYao, H., X. Wang, H. Qi und X. Liang. „TIGHTLY COUPLED INDOOR POSITIONING USING UWB/MMWAVE RADAR/IMU“. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVI-3/W1-2022 (05.05.2022): 323–29. http://dx.doi.org/10.5194/isprs-archives-xlvi-3-w1-2022-323-2022.
Der volle Inhalt der QuelleJiang, Ting, Maozhong Song, Xiaorong Zhu und Xu Liu. „Channel Estimation for Broadband Millimeter Wave MIMO Systems Based on High-Order PARALIND Model“. Wireless Communications and Mobile Computing 2021 (23.11.2021): 1–12. http://dx.doi.org/10.1155/2021/6408442.
Der volle Inhalt der QuelleIdan, Hayder R., Basim K. AL-Shammari und Hasan F. Khazal. „mmWave Compound Link Budget Model of Dust and Humidity Effect“. Wasit Journal of Engineering Sciences 11, Nr. 1 (01.04.2023): 45–60. http://dx.doi.org/10.31185/ejuow.vol11.iss1.323.
Der volle Inhalt der QuelleDissertationen zum Thema "MMWAVE PROPAGATION"
Baldù, Giuseppe. „Characterization of millimeter wave propagation in indoor office environments“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25096/.
Der volle Inhalt der QuelleOlbert, Jaroslav. „Modelování propagace signálu bezdrátových sítí LTE a WiFi uvnitř budov“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-317037.
Der volle Inhalt der QuelleZeman, Kryštof. „Modelování propagačního kanálu pro off-body komunikaci v oblasti milimetrových vln“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-403857.
Der volle Inhalt der QuelleShareef, O. A., M. M. Abdulwahid, M. F. Mosleh und Raed A. Abd-Alhameed. „The Optimum Location for Access Point Deployment based on RSS for Indoor Communication“. 2019. http://hdl.handle.net/10454/16995.
Der volle Inhalt der QuelleIn indoor wireless communication networks, the optimal locations had been known to deploy the access points (AP's) which has a significant impact on improving various aspects of network operation, management, and coverage. In addition, develop the behavioral characteristics of the wireless network. The most used approach for localization purposes was based on Received Signal Strength (RSS) measurements, which is widely used in the wireless network. As well as, it can be easily accessed from different operating systems. In this paper, we proposed an optimal AP localization algorithm based on RSS measurement obtained from different received points. This localization algorithm works as a complementary to the 3D Ray tracing model based REMCOM wireless InSite software and considered two-step localization approach, data collection phase, and localization phase. Obtained result give relatively high accuracy to select the optimum location for AP compare with other selected locations. It is worth to mention that effect of different building materials on signal propagation has been considered with specifying the optimum location of deployment. Furthermore, channel characterizations that based on path losses have been considered as a confirmation for the optimum location being selected.
AGRAWAL, SACHIN KUMAR. „SOFTWARE DEFINED RADIO ATTENUATION CONTROL IN 5G COMMUNICATION SYSTEM“. Thesis, 2019. http://dspace.dtu.ac.in:8080/jspui/handle/repository/17129.
Der volle Inhalt der QuelleBücher zum Thema "MMWAVE PROPAGATION"
Rappaport, Theodore S., Kate A. Remley, Camillo Gentile, Andreas F. Molisch und Alenka Zajić, Hrsg. Radio Propagation Measurements and Channel Modeling: Best Practices for Millimeter-Wave and Sub-Terahertz Frequencies. Cambridge University Press, 2022. http://dx.doi.org/10.1017/9781009122740.
Der volle Inhalt der QuelleBuchteile zum Thema "MMWAVE PROPAGATION"
Ponomarenko-Timofeev, Aleksei, Aleksandr Ometov und Olga Galinina. „Ray-Based Modeling of Unlicensed-Band mmWave Propagation Inside a City Bus“. In Lecture Notes in Computer Science, 269–81. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30859-9_23.
Der volle Inhalt der QuellePonomarenko-Timofeev, Aleksei, Vasilii Semkin, Pavel Masek und Olga Galinina. „Characterizing mmWave Radio Propagation at 60 GHz in a Conference Room Scenario“. In Lecture Notes in Computer Science, 381–93. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01168-0_35.
Der volle Inhalt der QuelleShamsan, Zaid Ahmed. „A Statistical Channel Propagation Analysis for 5G mmWave at 73 GHz in Urban Microcell“. In Lecture Notes on Data Engineering and Communications Technologies, 748–56. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70713-2_68.
Der volle Inhalt der Quelle„mmWave Propagation Modelling: Atmospheric Gaseous and Rain Losses“. In 5G Physical Layer Technologies, 241–88. Chichester, UK: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119525547.ch6.
Der volle Inhalt der Quelle„Millimeter-Wave (mmWave) Radio Propagation Characteristics ....... JOONGHEON KIM“. In Opportunities in 5G Networks, 481–500. CRC Press, 2016. http://dx.doi.org/10.1201/b19698-26.
Der volle Inhalt der QuelleAl-Kamali, Faisal, Mohamed Alouzi, Claude D’Amours und Francois Chan. „Architectures for Hybrid Precoding and Combining Techniques in Massive MIMO Systems Operating in the mmWave Band“. In MIMO Communications - Fundamental Theory, Propagation Channels, and Antenna Systems [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.112113.
Der volle Inhalt der Quelle„mmWave Propagation Modelling - Weather, Vegetation, and Building Material Losses“. In 5G Physical Layer Technologies, 289–345. Chichester, UK: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119525547.ch7.
Der volle Inhalt der QuelleG., Senbagavalli, T. Kavitha, Aruna Ramalingam und Velvizhi V. A. „6G With TeraHertz Communications“. In Advances in Wireless Technologies and Telecommunication, 218–47. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-9636-4.ch011.
Der volle Inhalt der QuelleKourogiorgas, Charilaos, Nektarios Moraitis und Athanasios D. Panagopoulos. „Radio Channel Modeling and Propagation Prediction for 5G Mobile Communication Systems“. In Advances in Wireless Technologies and Telecommunication, 1–30. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-8732-5.ch001.
Der volle Inhalt der QuelleVuckovic, Katarina, und Nazanin Rahanvard. „Localization Techniques in Multiple-Input Multiple-Output Communication: Fundamental Principles, Challenges, and Opportunities“. In MIMO Communications - Fundamental Theory, Propagation Channels, and Antenna Systems [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.112037.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "MMWAVE PROPAGATION"
Zeman, Krystof, Martin Stusek, Pavel Masek, Jiri Hosek und Jindriska Sedova. „Enhanced 3D Propagation Loss Model for mmWave Communications“. In 2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). IEEE, 2018. http://dx.doi.org/10.1109/icumt.2018.8631276.
Der volle Inhalt der QuelleAntonescu, Bogdan, Miead Tehrani Moayyed und Stefano Basagni. „Outdoor mmWave Channel Propagation Models using Clustering Algorithms“. In 2020 International Conference on Computing, Networking and Communications (ICNC). IEEE, 2020. http://dx.doi.org/10.1109/icnc47757.2020.9049734.
Der volle Inhalt der QuelleAntonescu, Bogdan, Miead Tehrani Moayyed und Stefano Basagni. „mmWave channel propagation modeling for V2X communication systems“. In 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). IEEE, 2017. http://dx.doi.org/10.1109/pimrc.2017.8292718.
Der volle Inhalt der QuellePrasad, S., M. Meenakshi und P. H. Rao. „Hardware Impairments in mmWave Phased Arrays“. In 2022 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON). IEEE, 2022. http://dx.doi.org/10.1109/mapcon56011.2022.10047354.
Der volle Inhalt der QuelleFoegelle, M. D. „5G and mmWave Device Measurement Challenges“. In 12th European Conference on Antennas and Propagation (EuCAP 2018). Institution of Engineering and Technology, 2018. http://dx.doi.org/10.1049/cp.2018.0742.
Der volle Inhalt der QuelleKoslowski, Konstantin, Felix Baum, Luca Buhler, Michael Peter und Wilhelm Keusgen. „Enhancing mmWave Devices with Custom Lenses“. In 2022 16th European Conference on Antennas and Propagation (EuCAP). IEEE, 2022. http://dx.doi.org/10.23919/eucap53622.2022.9769338.
Der volle Inhalt der QuelleTishchenko, Anton, Ali Ali, Paul Botham, Fraser Burton, Mohsen Khalily und Rahim Tafazolli. „Reflective Metasurface for 5G mmWave Coverage Enhancement“. In 2022 International Symposium on Antennas and Propagation (ISAP). IEEE, 2022. http://dx.doi.org/10.1109/isap53582.2022.9998700.
Der volle Inhalt der QuelleAzpilicueta, L., F. A. Rodriguez-Corbo, M. Celaya-Echarri, P. Lopez-Iturri, David G. Michelson und F. Falcone. „Deterministic-Based 5G mmWave Propagation Characterization in Urban Environments“. In 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). IEEE, 2021. http://dx.doi.org/10.1109/aps/ursi47566.2021.9704243.
Der volle Inhalt der QuelleHoellinger, Joseph, Gloria Makhoul, Raffaele D'Errico und Thierry Marsault. „V2V Dynamic Channel Characterization in 5G mmWave Band“. In 2022 International Symposium on Antennas and Propagation (ISAP). IEEE, 2022. http://dx.doi.org/10.1109/isap53582.2022.9998590.
Der volle Inhalt der QuelleKarthikeya, G. S., und H. S. Suraj. „mmWave metamaterial inspired coaxial-fed microstrip antenna array for Femtosat“. In 2016 Loughborough Antennas & Propagation Conference (LAPC). IEEE, 2016. http://dx.doi.org/10.1109/lapc.2016.7807518.
Der volle Inhalt der Quelle