Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Molecular Charge.

Zeitschriftenartikel zum Thema „Molecular Charge“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Molecular Charge" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Zhu, Xin, Xiao Jie Li, Yang Liu, Xi Shan Guo und Yin Fei Zheng. „Numerical Study of Single Molecular Charge Sensing by FET-Integrated Nanopore Biosensor“. Materials Science Forum 1058 (05.04.2022): 99–104. http://dx.doi.org/10.4028/p-8kmke2.

Der volle Inhalt der Quelle
Annotation:
This report studies the charge-based sensing modality of FET-embedded nanopore biosensors through FEM simulation. PNP equation is solved to analyze the mirror charge introduced by charged biomolecule while threading through the nanopore-FET sensor. Negative and positive charged molecules are analyzed respectively. Obvious local potential change induced by the presenting of charged molecules nearby is observed. In addition, the transport-induced descreening effect is observed under intensive bias, which might explain the capability of charge sensing even under high concentrations such as 1 M for FET-nanopore biosensors.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hinze, Juergen, F. Biegler-Konig und A. G. Lowe. „Molecular charge density analysis“. Canadian Journal of Chemistry 74, Nr. 6 (01.06.1996): 1049–53. http://dx.doi.org/10.1139/v96-117.

Der volle Inhalt der Quelle
Annotation:
It is proposed to analyse the first-order reduced density matrix of a molecular wave function in terms of the first-order reduced density matrices of different states of the constituent atoms. With this an unambiguous partitioning of the molecular charge distribution in terms of the atomic charge distributions is obtained. Simple practical formulae are derived, such that in many ab initio molecular wave function calculations the analysis proposed can be carried out routinely. The results obtained should be useful for the interpretation of molecular wave functions in terms of their atomic constituents, as well as for the determination of atomic form factors to be used in X-ray molecular structure determination. Some simple examples are given, and the results obtained are compared with those obtained using other methods of analysis. Key words: charge density, density matrix, goodness-of-fit, correlation coefficient, standard deviation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Alavi, Ali, Luis J. Alvarez, Stephen R. Elliott und Ian R. McDonald. „Charge-transfer molecular dynamics“. Philosophical Magazine B 65, Nr. 3 (März 1992): 489–500. http://dx.doi.org/10.1080/13642819208207645.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Strohriegl, P., und J. V. Grazulevicius. „Charge-Transporting Molecular Glasses“. Advanced Materials 14, Nr. 20 (16.10.2002): 1439–52. http://dx.doi.org/10.1002/1521-4095(20021016)14:20<1439::aid-adma1439>3.0.co;2-h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wörner, Hans Jakob, Christopher A. Arrell, Natalie Banerji, Andrea Cannizzo, Majed Chergui, Akshaya K. Das, Peter Hamm et al. „Charge migration and charge transfer in molecular systems“. Structural Dynamics 4, Nr. 6 (November 2017): 061508. http://dx.doi.org/10.1063/1.4996505.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Klumpp, Douglas A. „Molecular rearrangements of superelectrophiles“. Beilstein Journal of Organic Chemistry 7 (23.03.2011): 346–63. http://dx.doi.org/10.3762/bjoc.7.45.

Der volle Inhalt der Quelle
Annotation:
Superelectrophiles are multiply charged cationic species (dications, trications, etc.) which are characterized by their reactions with weak nucleophiles. These reactive intermediates may also undergo a wide variety of rearrangement-type reactions. Superelectrophilic rearrangements are often driven by charge–charge repulsive effects, as these densely charged ions react so as to maximize the distances between charge centers. These rearrangements involve reaction steps similar to monocationic rearrangements, such as alkyl group shifts, Wagner–Meerwein shifts, hydride shifts, ring opening reactions, and other skeletal rearrangements. This review will describe these types of superelectrophilic reactions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hersam, M. C., und R. G. Reifenberger. „Charge Transport through Molecular Junctions“. MRS Bulletin 29, Nr. 6 (Juni 2004): 385–90. http://dx.doi.org/10.1557/mrs2004.120.

Der volle Inhalt der Quelle
Annotation:
AbstractIn conventional solid-state electronic devices, junctions and interfaces play a significant if not dominant role in controlling charge transport. Although the emerging field of molecular electronics often focuses on the properties of the molecule in the design and understanding of device behavior, the effects of interfaces and junctions are often of comparable importance. This article explores recent work in the study of metal–molecule–metal and semiconductor–molecule–metal junctions. Specific issues include the mixing of discrete molecular levels with the metal continuum, charge transfer between molecules and semiconductors, electron-stimulated desorption, and resonant tunneling. By acknowledging the consequences of junction/interface effects, realistic prospects and limitations can be identified for molecular electronic devices.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hopper, A. K. „MOLECULAR BIOLOGY:Nuclear Functions Charge Ahead“. Science 282, Nr. 5396 (11.12.1998): 2003–4. http://dx.doi.org/10.1126/science.282.5396.2003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Fletcher, Liz. „Roche leads molecular diagnostics charge“. Nature Biotechnology 20, Nr. 1 (Januar 2002): 6–7. http://dx.doi.org/10.1038/nbt0102-6b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Jan van der Molen, Sense, und Peter Liljeroth. „Charge transport through molecular switches“. Journal of Physics: Condensed Matter 22, Nr. 13 (17.03.2010): 133001. http://dx.doi.org/10.1088/0953-8984/22/13/133001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Miller, Joel S., Arthur J. Epstein und William M. Reiff. „Ferromagnetic molecular charge-transfer complexes“. Chemical Reviews 88, Nr. 1 (Januar 1988): 201–20. http://dx.doi.org/10.1021/cr00083a010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Chittipeddi, Sailesh R., Arthur J. Epstein, Jian H. Zhang, William M. Reiff, Ivar Hamberg, David B. Tanner, David C. Johnson und Joel S. Miller. „Magnetic molecular charge transfer complexes“. Synthetic Metals 19, Nr. 1-3 (März 1987): 731–35. http://dx.doi.org/10.1016/0379-6779(87)90444-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Seo, Hitoshi, und Hidetoshi Fukuyama. „Charge ordering in molecular solids“. Synthetic Metals 135-136 (April 2003): 673–75. http://dx.doi.org/10.1016/s0379-6779(02)00774-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Siegle, Viktor, Chen-Wei Liang, Bernd Kaestner, Hans Werner Schumacher, Florian Jessen, Dieter Koelle, Reinhold Kleiner und Siegmar Roth. „A Molecular Quantized Charge Pump“. Nano Letters 10, Nr. 10 (13.10.2010): 3841–45. http://dx.doi.org/10.1021/nl101023u.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Furuhashi, Osamu, Tohru Kinugawa, Nobuyuki Nakamura, Suomi Masuda, Chikashi Yamada und Shunsuke Ohtani. „Doubly Charged Molecular Ions Studied by Double Charge Transfer Spectroscopy“. Journal of the Chinese Chemical Society 48, Nr. 3 (Juni 2001): 531–34. http://dx.doi.org/10.1002/jccs.200100080.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

French, S. A., und C. R. A. Catlow. „Molecular mechanics simulations of charge-transfer molecular superconductors“. Journal of Materials Chemistry 11, Nr. 9 (2001): 2102–7. http://dx.doi.org/10.1039/b009960k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Braswell, Emory H. „Polyelectrolyte Charge Corrected Molecular Weight and Effective Charge by Sedimentation“. Biophysical Journal 51, Nr. 2 (Februar 1987): 273–81. http://dx.doi.org/10.1016/s0006-3495(87)83333-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Korchowiec, Jacek, und Piotr Kowalski. „Charge polarization of molecular systems. Charge sensitivity and MNDO study“. Chemical Physics Letters 208, Nr. 1-2 (Juni 1993): 135–38. http://dx.doi.org/10.1016/0009-2614(93)80090-c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Martı́nez Morales, Evangelina, Claudio M. Zicovich-Wilson, Jorge E. Sánchez Sánchez und Luis Javier Alvarez. „Charge distribution in NaY zeolite from charge-transfer molecular dynamics“. Chemical Physics Letters 327, Nr. 3-4 (September 2000): 224–29. http://dx.doi.org/10.1016/s0009-2614(00)00790-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Matsubara, Masahiko, und Carlo Massobrio. „An Extensive Study of Charge Effects in Silicon Doped Heterofullerenes“. Solid State Phenomena 129 (November 2007): 95–103. http://dx.doi.org/10.4028/www.scientific.net/ssp.129.95.

Der volle Inhalt der Quelle
Annotation:
We present an analysis of charge effects on the highly silicon doped heterofullerenes C30Si30. Structural and electronic properties are investigated by the inclusion of an extra pos- itive and negative charge in the neutral system. The calculations are performed based on the framework of Car-Parrinello molecular dynamics within the spin density version of density functional theory. Structural properties are not significantly affected by adding to or extracting from the C30Si30 heterofullerene one electron. However, the change of charge states has some ef- fects on the electronic properties of heterofullerenes. In the negatively charged system, negative charges are found in the inner part of the Si region, thereby suggesting potential applications of Si-based heterofullerenes as anionic systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

von Döhren, Hans. „Charged tRNAs charge into secondary metabolism“. Nature Chemical Biology 5, Nr. 6 (Juni 2009): 374–75. http://dx.doi.org/10.1038/nchembio0609-374.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Rys, Paul, Ruth Weber und Qinglan Wu. „Light-induced change of the molecular charge in a spironaphthoxazine compound“. Canadian Journal of Chemistry 71, Nr. 11 (01.11.1993): 1828–33. http://dx.doi.org/10.1139/v93-228.

Der volle Inhalt der Quelle
Annotation:
To evaluate the experimental conditions for the light-induced change of the molecular charge, the dependence of the photochromic reaction behaviour of the indolino spiro naphthoxazine compound 1,3,3-trimethyl-spiro[2H-indol 2,3′-[3H]naphth[2,1-b]-[1,4]oxazine] on the pH value of the solution is investigated. In the absence of UV light an acid–base equilibrium between the spiro form and a protonated closed form is established. By irradiation under appropriate acidic conditions the spiro form can be transformed into an open cationic form through the merocyanine form. Between the two open forms an acid–base equilibrium is established. Except for the closed protonated form the structures are confirmed by mean of NMR. The kinetics of the thermal ring-closing reaction of both forms are investigated by flash photolysis. It is shown that the ring-closing reaction proceeds exclusively via the merocyanine form. The pK values determined for both equilibria give the pH range, in which the light-induced change of the molecular charge occurs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Nespolo, Massimo, und Benoît Guillot. „CHARDI2015: charge distribution analysis of non-molecular structures“. Journal of Applied Crystallography 49, Nr. 1 (01.02.2016): 317–21. http://dx.doi.org/10.1107/s1600576715024814.

Der volle Inhalt der Quelle
Annotation:
The charge distribution method describes non-molecular crystal structures in a Madelung-type approach in which the formal oxidation number (`charge') of each atom is distributed among its neighbours. The sum of the distributed charges gives back the input charge when a structure is correctly refined and well balanced, so that the method can be used for structure validation and for the analysis of over- and underbonding effects. A new version of the software used to compute the charge distribution is presented, now with a CIF parser and graphical user interface.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Richard, Ann M., und James R. Rabinowitz. „Modified molecular charge similarity indices for choosing molecular analogues“. International Journal of Quantum Chemistry 31, Nr. 2 (Februar 1987): 309–23. http://dx.doi.org/10.1002/qua.560310211.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Bonn, Annabell G., und Oliver S. Wenger. „Photoinduced Charge Accumulation in Molecular Systems“. CHIMIA International Journal for Chemistry 69, Nr. 1 (25.02.2015): 17–21. http://dx.doi.org/10.2533/chimia.2015.17.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

KUSHMERICK, J. J., S. K. POLLACK, J. C. YANG, J. NACIRI, D. B. HOLT, M. A. RATNER und R. SHASHIDHAR. „Understanding Charge Transport in Molecular Electronics“. Annals of the New York Academy of Sciences 1006, Nr. 1 (Dezember 2003): 277–90. http://dx.doi.org/10.1196/annals.1292.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Xu, Beibei, Zheng Li, Shuquan Chang und Shenqiang Ren. „Multifunctional molecular charge-transfer thin films“. Nanoscale 11, Nr. 46 (2019): 22585–89. http://dx.doi.org/10.1039/c9nr08637d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Leypoldt, John K., und Lee W. Henderson. „Molecular charge influences transperitoneal macromolecule transport“. Kidney International 43, Nr. 4 (April 1993): 837–44. http://dx.doi.org/10.1038/ki.1993.118.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Gong, Xiaojing, Jingyuan Li, Hangjun Lu, Rongzheng Wan, Jichen Li, Jun Hu und Haiping Fang. „A charge-driven molecular water pump“. Nature Nanotechnology 2, Nr. 11 (21.10.2007): 709–12. http://dx.doi.org/10.1038/nnano.2007.320.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Wang, Yu, Yanjiao Zhao und Jiping Huang. „A charge-driven molecular flip-flop“. European Physical Journal Applied Physics 61, Nr. 3 (26.02.2013): 30401. http://dx.doi.org/10.1051/epjap/2013120355.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Wood, Jonathan. „Single charge points to molecular transistor“. Materials Today 8, Nr. 8 (August 2005): 10. http://dx.doi.org/10.1016/s1369-7021(05)71020-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Borsenberger, P. M., L. Pautmeier und H. Bässler. „Charge transport in disordered molecular solids“. Journal of Chemical Physics 94, Nr. 8 (15.04.1991): 5447–54. http://dx.doi.org/10.1063/1.460506.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Rappe, Anthony K., und William A. Goddard. „Charge equilibration for molecular dynamics simulations“. Journal of Physical Chemistry 95, Nr. 8 (April 1991): 3358–63. http://dx.doi.org/10.1021/j100161a070.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Carlson, Christin N., Christopher J. Kuehl, Ryan E. Da Re, Jacqueline M. Veauthier, Eric J. Schelter, Ashley E. Milligan, Brian L. Scott et al. „Ytterbocene Charge-Transfer Molecular Wire Complexes“. Journal of the American Chemical Society 128, Nr. 22 (Juni 2006): 7230–41. http://dx.doi.org/10.1021/ja058667e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Borsenberger, Paul M. „Charge Transport in Disordered Molecular Solids“. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 228, Nr. 1 (Mai 1993): 167–73. http://dx.doi.org/10.1080/10587259308032155.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Prins, P., F. C. Grozema und L. D. A. Siebbeles. „Charge transport along phenylenevinylene molecular wires“. Molecular Simulation 32, Nr. 9 (August 2006): 695–705. http://dx.doi.org/10.1080/08927020600835657.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Mühlbacher, L., und J. Ankerhold. „Correlated charge transfer along molecular chains“. New Journal of Physics 10, Nr. 6 (30.06.2008): 065023. http://dx.doi.org/10.1088/1367-2630/10/6/065023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Zhou, Jiawang, Sravan K. Surampudi, Arthur E. Bragg und Rebekka S. Klausen. „Photoinduced Charge Separation in Molecular Silicon“. Chemistry - A European Journal 22, Nr. 18 (09.03.2016): 6204–7. http://dx.doi.org/10.1002/chem.201600846.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Brady, Patrick V., Randall T. Cygan und Kathryn L. Nagy. „Molecular Controls on Kaolinite Surface Charge“. Journal of Colloid and Interface Science 183, Nr. 2 (November 1996): 356–64. http://dx.doi.org/10.1006/jcis.1996.0557.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Burin, Alexander L., und Mark A. Ratner. „Charge injection into disordered molecular films“. Journal of Polymer Science Part B: Polymer Physics 41, Nr. 21 (08.10.2003): 2601–21. http://dx.doi.org/10.1002/polb.10651.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Awais, Mohammad Ahmad, Zhengxu Cai, Na Zhang und Luping Yu. „Molecular Design towards Controlling Charge Transport“. Chemistry - A European Journal 24, Nr. 65 (27.09.2018): 17180–87. http://dx.doi.org/10.1002/chem.201803054.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

García-Sucre, M. „Nuclear-charge scaling in molecular systems“. Journal of Molecular Structure: THEOCHEM 199 (September 1989): 271–82. http://dx.doi.org/10.1016/0166-1280(89)80059-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Ma, Ying, und Stephen H. Garofalini. „Iterative fluctuation charge model: A new variable charge molecular dynamics method“. Journal of Chemical Physics 124, Nr. 23 (21.06.2006): 234102. http://dx.doi.org/10.1063/1.2206578.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Saethre, Leif J., Michele R. F. Siggel und T. Darrah Thomas. „Molecular charge distribution, core-ionization energies, and the point-charge approximation“. Journal of the American Chemical Society 113, Nr. 14 (Juli 1991): 5224–30. http://dx.doi.org/10.1021/ja00014a014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Aoki, Kozo, Shigenori Tanaka und Tatsuya Nakano. „Molecular geometry-dependent atomic charge calculation with modified charge equilibration method“. Chem-Bio Informatics Journal 9 (2009): 30–40. http://dx.doi.org/10.1273/cbij.9.30.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Bei-Bei, YUAN, ZHOU Bei-Bei, ZHANG Yue-Biao und SHI Jian-Lin. „Charge-switchable Metal-organic Framework for Size/Charge-selective Molecular Inclusions“. Journal of Inorganic Materials 33, Nr. 3 (2018): 352. http://dx.doi.org/10.15541/jim20170163.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

LIMA, Francisco José Santos, Roseane Maria de MELO, Ademir Oliveira da SILVA und Cláudio César de Medeiros BRAGA. „MOLECULAR REACTIVITY PARAMETERS“. Periódico Tchê Química 07, Nr. 4 (20.01.2007): 7–15. http://dx.doi.org/10.52571/ptq.v4.n07.2007.janeiro/1_pgs_7_15.pdf.

Der volle Inhalt der Quelle
Annotation:
The distribution of charge partial depends critically of the geometry and of the environment chemical. The parameters of reactivity molecular evaluate the contribution relative of the charge of either atom in the molecule in relation the all too much elements present. The association of these parameters with the geometry of the molecules becomes useful in the evaluation of the reactivities of the substances and in the interpretation of yours respective properties physical-chemistries. In this present work, were developed arguments theoretical for the parameters of reactivity molecular (PRM), that were compared with properties physical-chemistries acquaintances of the solvents selected: water, ethanol, acetone, nitromethane and some solutions of these, because are strategic in the synthesis of compounds inorganic. Through of the program WebLab ViewerPro, were accomplished the modelling molecular, the determination of the angles, of the distance of bond and the calculation of charge partial. The values of the parameters generated by the evaluations of the charges partials, together with the geometry molecular, they provided the analisys qualitative of the possible places more reactive in the surface of the structures of the systems chemical that favour areas of potential interaction the level molecular.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Feizabadi, Mitra Shojania, Ramiz S. Alejilat, Alexis B. Duffy, Jane C. Breslin und Ibukunoluwa I. Akintola. „A Confirmation for the Positive Electric Charge of Bio-Molecular Motors through Utilizing a Novel Nano-Technology Approach In Vitro“. International Journal of Molecular Sciences 21, Nr. 14 (13.07.2020): 4935. http://dx.doi.org/10.3390/ijms21144935.

Der volle Inhalt der Quelle
Annotation:
Molecular motors are microtubule-based proteins which contribute to many cell functions, such as intracellular transportation and cell division. The details of the nature of the mutual interactions between motors and microtubules still needs to be extensively explored. However, electrostatic interaction is known as one of the key factors making motor-microtubule association possible. The association rate of molecular motors to microtubules is a way to observe and evaluate the charge of the bio-motors in vivo. Growing evidence indicates that microtubules with distinct structural compositions in terms of beta tubulin isotypes carry different charges. Therefore, the electrostatic-driven association rate of motors–microtubules, which is a base for identifying the charge of motors, can be more likely influenced. Here, we present a novel method to experimentally confirm the charge of molecular motors in vitro. The offered nanotechnology-based approach can validate the charge of motors in the absence of any cellular components through the observation and analysis of the changes that biomolecular motors can cause on the dynamic of charged microspheres inside a uniform electric field produced by a microscope slide-based nanocapacitor. This new in vitro experimental method is significant as it minimizes the intracellular factors that may interfere the electric charge that molecular motors carry.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Liu, Yuru, Xinkai Qiu, Saurabh Soni und Ryan C. Chiechi. „Charge transport through molecular ensembles: Recent progress in molecular electronics“. Chemical Physics Reviews 2, Nr. 2 (Juni 2021): 021303. http://dx.doi.org/10.1063/5.0050667.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Naka, Makoto, und Hitoshi Seo. „Long-Period Charge Correlations in Charge-Frustrated Molecular θ-(BEDT-TTF)2X“. Journal of the Physical Society of Japan 83, Nr. 5 (15.05.2014): 053706. http://dx.doi.org/10.7566/jpsj.83.053706.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie