Zeitschriftenartikel zum Thema „Molecular organic conductors“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Molecular organic conductors.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Molecular organic conductors" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Donaldson, Laurie. „Excluding molecular dopants improves organic conductors“. Materials Today 36 (Juni 2020): 3–4. http://dx.doi.org/10.1016/j.mattod.2020.04.023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kadoya, Tomofumi. „Molecular conductors composed from Organic-Transistor Materials“. Impact 2020, Nr. 4 (13.10.2020): 38–39. http://dx.doi.org/10.21820/23987073.2020.4.38.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Assistant Professor Tomofumi Kadoya is part of a team within the Graduate School of Material Science at the University of Hyogo in Japan. He is engaged with a range of different investigations related to conductive organic materials. One of the main focuses of Kadoya's research is organic transistors and organic charge-transfer (CT) complexes. CT complexes achieve conductivity by chemical doping but in organic transistors, conduction carriers are generated by field effect, where an electric field is used to control the flow of current. Among the many goals of the research, Kadoya and his team want to increase the methods and types of organic doping.
3

KHODORKOVSKY, V., und J. Y. BECKER. „ChemInform Abstract: Molecular Design of Organic Conductors“. ChemInform 26, Nr. 28 (17.08.2010): no. http://dx.doi.org/10.1002/chin.199528328.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bechgaard, K., und D. Jérome. „Organic Conductors and Organic Superconductivity“. Physica Scripta T39 (01.01.1991): 37–44. http://dx.doi.org/10.1088/0031-8949/1991/t39/004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

KOBAYASHI, Hayao, Reizo KATO und Akiko KOBAYASHI. „Molecular conductors - From isolated molecule to organic superconductor.“ Nihon Kessho Gakkaishi 27, Nr. 5 (1985): 314–23. http://dx.doi.org/10.5940/jcrsj.27.314.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hasegawa, Hiroyuki, Susumu Takano, Nobuhiko Miyajima und Tamotsu Inabe. „Molecular Conductors Comprised of Organic Cations and Phthalocyanines“. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 285, Nr. 1 (01.07.1996): 113–18. http://dx.doi.org/10.1080/10587259608030787.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Caro, Jaume, Susana Garelik und Albert Figueras. „Anisotropic materials prepared by OCVD: Organic molecular conductors“. Chemical Vapor Deposition 2, Nr. 6 (November 1996): 251–53. http://dx.doi.org/10.1002/cvde.19960020609.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Cassoux, P., L. Brossard, M. Tokumoto, H. Kobayashi, A. Moradpour, D. Zhu, M. Mizuno und E. Yagubskii. „New results on molecular inorganic and organic conductors“. Synthetic Metals 71, Nr. 1-3 (April 1995): 1845–48. http://dx.doi.org/10.1016/0379-6779(94)03076-i.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Yoshida, Zen-Ichi, und Toyonari Sugimoto. „New Donors for Molecular Organic (Super)Conductors and Ferromagnets“. Angewandte Chemie 100, Nr. 11 (November 1988): 1633–37. http://dx.doi.org/10.1002/ange.19881001148.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Yoshida, Zen-ichi, und Toyonari Sugimoto. „New Donors for Molecular Organic(Super)Conductors and Ferromagnets“. Angewandte Chemie International Edition in English 27, Nr. 11 (November 1988): 1573–77. http://dx.doi.org/10.1002/anie.198815731.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Kobayashi, Hayao, Akiko Kobayashi und Hiroyuki Tajima. „Studies on Molecular Conductors: From Organic Semiconductors to Molecular Metals and Superconductors“. Chemistry - An Asian Journal 6, Nr. 7 (24.05.2011): 1688–704. http://dx.doi.org/10.1002/asia.201100061.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Zorina, L., R. Shibaeva, S. Khasanov, S. Simonov, L. Kushch, E. Yagubskii, C. Meziere, S. Baudron, P. Batail und E. Canadell. „Structures of new molecular conductors based on functionalized organic donors“. Acta Crystallographica Section A Foundations of Crystallography 61, a1 (23.08.2005): c342—c343. http://dx.doi.org/10.1107/s0108767305085417.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Williams, Jack M. „Organic Conductors as Novel “Molecular Rulers” for Advanced Manufacturing Processes“. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 284, Nr. 1 (01.06.1996): 449–51. http://dx.doi.org/10.1080/10587259608037947.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Hasegawa, H., S. Takano, N. Miyajima und T. Inabe. „Molecular conductors based on axially substituted phthalocyanines and organic cations“. Synthetic Metals 86, Nr. 1-3 (Februar 1997): 1895–96. http://dx.doi.org/10.1016/s0379-6779(96)04642-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Underhill, A. E., R. A. Clark, P. I. Clemenson, R. Friend, M. Allen, I. Marsden, A. Kobayashi und H. Kobayashi. „Molecular Conductors Based on Complex Metal Anions“. Phosphorus, Sulfur, and Silicon and the Related Elements 67, Nr. 1-4 (01.04.1992): 311–25. http://dx.doi.org/10.1080/10426509208045853.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Pouget, Jean-Paul, Pere Alemany und Enric Canadell. „Donor–anion interactions in quarter-filled low-dimensional organic conductors“. Materials Horizons 5, Nr. 4 (2018): 590–640. http://dx.doi.org/10.1039/c8mh00423d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Blundell, S. J. „Muon studies of organic ferromagnets and conductors“. Applied Magnetic Resonance 13, Nr. 1-2 (Juli 1997): 155–64. http://dx.doi.org/10.1007/bf03161977.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Yamamoto, Hiroshi. „Development of Organic Electronics and Mott-FETs Based on Molecular Conductors“. Molecular Science 4, Nr. 1 (2010): A0032. http://dx.doi.org/10.3175/molsci.4.a0032.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Dhakal, Pashupati, Harukazu Yoshino, Jeong-Il Oh, Koichi Kikuchi und Michael J. Naughton. „Multidimensional nature of molecular organic conductors revealed by angular magnetoresistance oscillations“. Synthetic Metals 162, Nr. 15-16 (September 2012): 1381–85. http://dx.doi.org/10.1016/j.synthmet.2012.05.021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Clemente-León, Miguel, Eugenio Coronado, Carlos Giménez-Saiz, Carlos J. Gómez-García, Eugenia Martínez-Ferrero, Manuel Almeida und Elsa B. Lopes. „Organic/inorganic molecular conductors based upon perylene and Lindquist-type polyoxometalates“. Journal of Materials Chemistry 11, Nr. 9 (2001): 2176–80. http://dx.doi.org/10.1039/b103032a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Underhill, Allan E., R. Andrew Clark und K. Sukumar Varma. „Sulphur—Containing Donors and Ligands for Molecular Conductors“. Phosphorus, Sulfur, and Silicon and the Related Elements 43, Nr. 1-2 (Mai 1989): 111–27. http://dx.doi.org/10.1080/10426508908040281.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Kobayashi, Hayao, Akiko Kobayashi und Hiroyuki Tajima. „ChemInform Abstract: Studies on Molecular Conductors: From Organic Semiconductors to Molecular Metals and Superconductors“. ChemInform 42, Nr. 38 (25.08.2011): no. http://dx.doi.org/10.1002/chin.201138260.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Bourbonnais, C., F. Creuzet, P. Wzietek und D. Jerome. „Physical Properties and Concepts for Organic Conductors“. Physica Scripta T29 (01.01.1989): 51–54. http://dx.doi.org/10.1088/0031-8949/1989/t29/008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Kagoshima, S., R. Kondo, N. Matsushita, S. V. Ovsyannikov, N. A. Shaidarova und V. V. Shchennikov. „Ultra high pressure application to organic conductors“. Journal of Low Temperature Physics 142, Nr. 3-4 (Februar 2006): 409–12. http://dx.doi.org/10.1007/bf02679532.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Kagoshima, S., R. Kondo, N. Matsushita, S. V. Ovsyannikov, N. A. Shaidarova und V. V. Shchennikov. „Ultra High Pressure Application to Organic Conductors“. Journal of Low Temperature Physics 142, Nr. 3-4 (20.01.2007): 413–16. http://dx.doi.org/10.1007/s10909-006-9126-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Wu, Lipeng, Fan Wu, Qinya Sun, Jiaoyan Shi, Aming Xie, Xufei Zhu und Wei Dong. „A TTF–TCNQ complex: an organic charge-transfer system with extraordinary electromagnetic response behavior“. Journal of Materials Chemistry C 9, Nr. 9 (2021): 3316–23. http://dx.doi.org/10.1039/d0tc05230b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Romain, Maxime, Denis Tondelier, Olivier Jeannin, Bernard Geffroy, Joëlle Rault-Berthelot und Cyril Poriel. „Properties modulation of organic semi-conductors based on a donor-spiro-acceptor (D-spiro-A) molecular design: new host materials for efficient sky-blue PhOLEDs“. Journal of Materials Chemistry C 3, Nr. 37 (2015): 9701–14. http://dx.doi.org/10.1039/c5tc01812a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Aizawa, Hirohito, Kazuhiko Kuroki, Harukazu Yoshino, George A. Mousdis, George C. Papavassiliou und Keizo Murata. „Molecular Dependence of the Large Seebeck Effect in τ-Type Organic Conductors“. Journal of the Physical Society of Japan 83, Nr. 10 (15.10.2014): 104705. http://dx.doi.org/10.7566/jpsj.83.104705.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Fraxedas, J., J. Caro und A. Figueras. „High vacuum co-evaporator for thin film deposition of molecular organic conductors“. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 15, Nr. 4 (Juli 1997): 2449–51. http://dx.doi.org/10.1116/1.580907.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Miyahira, Tetsuro, Hiroyuki Hasegawa, Yukihiro Takahashi und Tamotsu Inabe. „Electrochemical Crystallization of Organic Molecular Conductors: Electrode Surface Conditions for Crystal Growth“. Crystal Growth & Design 13, Nr. 5 (15.04.2013): 1955–60. http://dx.doi.org/10.1021/cg301852k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Figueras, A. „Anisotropic Marterials Prepared by CVD : Organic Molecular Conductors and High Tc Superconductors“. Le Journal de Physique IV 05, Nr. C5 (Juni 1995): C5–347—C5–356. http://dx.doi.org/10.1051/jphyscol:1995541.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Magonov, Sergei N., Georg Bar, Arkadij Y. Gorenberg, Eduard B. Yagubskii und Hans-Joachim Cantow. „Morphological and molecular processes observed using scanning tunneling microscopy on organic conductors“. Advanced Materials 5, Nr. 6 (Juni 1993): 453–58. http://dx.doi.org/10.1002/adma.19930050609.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

León, Gladys, und Thierry Giamarchi. „Hall effect in quasi one-dimensional organic conductors“. Journal of Low Temperature Physics 142, Nr. 3-4 (Februar 2006): 315–18. http://dx.doi.org/10.1007/bf02679514.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

León, Gladys, und Thierry Giamarchi. „Hall Effect in Quasi One-Dimensional Organic Conductors“. Journal of Low Temperature Physics 142, Nr. 3-4 (24.01.2007): 319–22. http://dx.doi.org/10.1007/s10909-006-9180-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Nad, F., und P. Monceau. „Charge ordering and ferroelectric states in organic quasi-one-dimensional conductors“. Journal de Physique IV 12, Nr. 9 (November 2002): 133–38. http://dx.doi.org/10.1051/jp4:200203379.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In quasi-one-dimensional (TMTTF)2X conductors [1], where X are the various centro-symmetrical and non-centrosymmetrical anions, by study of temperature dependences of conductance G and dielectric permittivity $\varepsilon '$ at low frequencies we have found anomalies which are characteristic for phase transitions: an abrupt bend on the G(l/T) dependences with thermally activated decrease of G and sharp maxima of the E' near the charge ordering temperature corresponding to the E' divergence according to the Curie law. A number of evidences have been obtained in favor that driving force of these phase transitions is the long range correlated electron interaction yielding the charge ordering along the molecular chains (a lattice version of the Wigner crystal). The anion chains, electrically balanced with molecular chains, are of very importance in the formation and the stabilization of these new phase states. It appears that the form of charge symmetry of the anions determines to a great extent the types of the occurring transitions and the developing ground states.
36

Figueras, A., S. Garelik, J. Caro, J. Cifré, J. Veciana, C. Rovira, E. Ribera, E. Canadell, A. Seffar und J. Fontcuberta. „Preparation and characterization of conducting thin films of molecular organic conductors (TTF-TCNQ)“. Journal of Crystal Growth 166, Nr. 1-4 (September 1996): 798–803. http://dx.doi.org/10.1016/0022-0248(96)00075-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Zhu, Haijin, Fangfang Chen, Liyu Jin, Luke A. O'Dell und Maria Forsyth. „Insight into Local Structure and Molecular Dynamics in Organic Solid-State Ionic Conductors“. ChemPhysChem 15, Nr. 17 (18.09.2014): 3720–24. http://dx.doi.org/10.1002/cphc.201402487.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Lunardi, G., und C. Pecile. „N,N’‐dicyanoquinonediimines as a molecular constituent of organic conductors: Vibrational behavior and electron–molecular vibration coupling“. Journal of Chemical Physics 95, Nr. 9 (November 1991): 6911–23. http://dx.doi.org/10.1063/1.461503.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Otsuka, Akihiro, Gunzi Saito, Kazuyo Ohfuchi und Michiko Konno. „C1TET-TTF and its Related Compounds as Single Component Molecular Conductors“. Phosphorus, Sulfur, and Silicon and the Related Elements 67, Nr. 1-4 (01.04.1992): 333–38. http://dx.doi.org/10.1080/10426509208045855.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Tokumoto, Madoka, Hisashi Tanaka, Takeo Otsuka, Hayao Kobayashi und Akiko Kobayashi. „Observation of spin-flop transition in antiferromagnetic organic molecular conductors using AFM micro-cantilever“. Polyhedron 24, Nr. 16-17 (November 2005): 2793–95. http://dx.doi.org/10.1016/j.poly.2005.03.171.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Mukherjee, V. „Molecular modeling, spectroscopic signature and NBO analysis of some building blocks of organic conductors“. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 132 (November 2014): 102–9. http://dx.doi.org/10.1016/j.saa.2014.04.104.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Garelik, S., J. Vidal Gancedo, A. Figueras, J. Caro, J. Veciana, C. Rovira, E. Ribera, E. Canadell, A. Seffar und J. Fontcuberta. „Conducting thin films of molecular organic conductors, tetrathiafulvalene-7,7,8,8-tetracyano-p-quinodimethane (TTF-TCNQ)“. Synthetic Metals 76, Nr. 1-3 (Januar 1996): 309–12. http://dx.doi.org/10.1016/0379-6779(95)03478-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Veciana, Jaume, und Hiizu Iwamura. „Organic Magnets“. MRS Bulletin 25, Nr. 11 (November 2000): 41–51. http://dx.doi.org/10.1557/mrs2000.223.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The notion of organic molecular materials showing metallic properties, such as electric conductivity or ferromagnetism, started several decades ago as a mere dream of some members of the chemical community. The goal was to create an assembly of organic molecules or macromolecules containing only light elements (C, H, N, O, S, etc.) and yet possessing the electron/hole mobility or spin alignment that is inherent in typical metals or their oxides and different from the isolated molecular materials. Organic molecular conductors initially were developed during the 1960s, but the first examples of organic molecular magnets took several more decades to be discovered, owing to the more subtle and complex structural and electronic aspects of these materials. The flurry of activity in this field can be traced to the widely held belief that even the most sophisticated properties can be rationally designed by a systematic modification of organic molecular structures. This motivation was further fueled by increased synthetic capabilities, especially for obtaining large organic molecules with suitable structures and topologies, and also by the spectacular progress of supramolecular chemistry for materials development witnessed in recent years. Also noteworthy is the pioneering work performed in the 1960s by several physical organic chemists who unraveled different ways of aligning spins within open-shell molecules (i.e., triplet diradicals, carbenes, etc.), working against nature's tendency to align them in an antiparallel manner. Magnetic interactions between unpaired electrons, located on the singly occupied molecular orbitals (SOMOs) of di- and polyradicals, or between the adjacent open-shell molecules in crystals, are a crucial issue in this evolving field. Thus, depending upon the symmetry, degeneracy,and topological characteristics of SOMOs and also on the mode of arrangement of the molecules in a crystal, the resulting interaction can align the neighboring spins parallel or antiparallel (see the introductory article by Miller and Epstein in this issue of MRS Bulletin).
44

Grätzel, Michael. „Molecular photovoltaics that mimic photosynthesis“. Pure and Applied Chemistry 73, Nr. 3 (01.01.2001): 459–67. http://dx.doi.org/10.1351/pac200173030459.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Learning from the concepts used by green plants, we have developed a photovoltaic cell based on molecular light absorbers and mesoporous electrodes. The sensitized nanocrystalline injection solar cell employs organic dyes or transition-metal complexes for spectral sensitization of oxide semiconductors, such as TiO2, ZnO, SnO2, and Nb2O5. Mesoporous films of these materials are contacted with redox electrolytes, amorphous organic hole conductors, or conducting polymers, as well as inorganic semiconductors. Light harvesting occurs efficiently over the whole visible and near-IR range due to the very large internal surface area of the films. Judicious molecular engineering allows the photoinduced charge separation to occur quantitatively within femtoseconds. The certified overall power conversion efficiency of the new solar cell for standard air mass 1.5 solar radiation stands presently between 10 and 11. The lecture will highlight recent progress in the development of solar cells for practical use. Advancement in the understanding of the factors that govern photovoltaic performance, as well as improvement of cell components to increase further its conversion efficiency will be discussed.
45

Jérome, D., F. Creuzet und C. Bourbonnais. „A survey of the physics of organic conductors and superconductors“. Physica Scripta T27 (01.01.1989): 130–35. http://dx.doi.org/10.1088/0031-8949/1989/t27/023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Deng, Ming Zhang, Bing Yan Zhang, De Kang Huang, Zhao Chen, Bing Bing Chen, Shao Hui Li, Yan Shen und Ming Kui Wang. „Modification on ITO to Fabricate Low Work Function Electrode in Inverted Organic Photovoltaics“. Advanced Materials Research 1090 (Februar 2015): 211–14. http://dx.doi.org/10.4028/www.scientific.net/amr.1090.211.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The PCE has a great relationship with the work function of conductors in organic and printed electronics devices. And organic photovoltaics require an electrode with a work function (WF) that is low enough to either facilitate the transport of electrons in and out of various optoelectronic devices or collect electrons from the lowest unoccupied molecular orbital (LUMO) of a given organic semiconductor. In inverted organic photovoltaics, the ITO is normally used as cathode to collect electrons .By using PDDA deposition, the surface work function of ITO can be decreased by 0.3 eV, which is able to improve the electrons transport and the PCE in OPV, as it has been proved that the surface electronic potential of ITO is very sensitive to the presence of self-assembled molecular layers.
47

Watanabe, Kazuyoshi, Naoki Miura, Hiroaki Taguchi, Takeshi Komatsu, Hideyuki Nosaka, Toshihiro Okamoto, Yu Yamashita, Shun Watanabe und Jun Takeya. „Improvement of contact resistance at carbon electrode/organic semiconductor interfaces through chemical doping“. Applied Physics Express 15, Nr. 10 (01.10.2022): 101005. http://dx.doi.org/10.35848/1882-0786/ac92c0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract Organic thin-film transistors (OTFTs) are promising building blocks for low cost, low-environmental load, and lightweight electronic devices. Carbon-based conductors can be potentially used as TFT electrodes. However, a concern is that the carbon electrode is unsuitable for carrier injection into organic semiconductors due to the difficulty in precise work function control. Herein, we have demonstrated that molecular dopants in carbon networks can improve carrier injection with a reasonably low contact resistance of 510 Ω·cm, which constitutes a key step in the realization of noble-metal-free electronic devices.
48

Kondo, R., M. Higa und S. Kagoshima. „Superconducting and charge ordering phases of two-dimensional organic conductors“. Journal of Low Temperature Physics 142, Nr. 3-4 (Februar 2006): 535–38. http://dx.doi.org/10.1007/bf02679563.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Kondo, R., M. Higa und S. Kagoshima. „Superconducting and Charge Ordering Phases of Two-Dimensional Organic Conductors“. Journal of Low Temperature Physics 142, Nr. 3-4 (20.01.2007): 539–42. http://dx.doi.org/10.1007/s10909-006-9161-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Zahn, Dirk. „Molecular dynamics simulation of ionic conductors: perspectives and limitations“. Journal of Molecular Modeling 17, Nr. 7 (31.10.2010): 1531–35. http://dx.doi.org/10.1007/s00894-010-0877-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie