Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Multi-detectors“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Multi-detectors" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Multi-detectors"
Ryzhikov, V. D. „Multi-layered composite detectors for neutron detection“. Functional materials 25, Nr. 1 (28.03.2018): 172–79. http://dx.doi.org/10.15407/fm25.01.172.
Der volle Inhalt der QuelleKandala, S., E. S. Sousa und S. Pasupathy. „Multi-user multi-sensor detectors for CDMA networks“. IEEE Transactions on Communications 43, Nr. 2/3/4 (Februar 1995): 946–57. http://dx.doi.org/10.1109/26.380127.
Der volle Inhalt der QuelleClement, J., H. Delagrange, H. Postec, B. Raine, J. Tillier, M. Tripon und D. Vaillant. „Multi-Processor Data Acquisition for Multi-Detectors at GANIL“. IEEE Transactions on Nuclear Science 34, Nr. 5 (1987): 1101–4. http://dx.doi.org/10.1109/tns.1987.4334810.
Der volle Inhalt der QuelleMoss, C. E., K. D. Ianakiev, T. H. Prettyman, M. K. Smith und M. R. Sweet. „Multi-element, large-volume CdZnTe detectors“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 458, Nr. 1-2 (Februar 2001): 455–60. http://dx.doi.org/10.1016/s0168-9002(00)00904-9.
Der volle Inhalt der QuelleChristou, A. „Electron Detectors For Microanalysis and High-Resolution Imaging“. Proceedings, annual meeting, Electron Microscopy Society of America 43 (August 1985): 162–65. http://dx.doi.org/10.1017/s0424820100117790.
Der volle Inhalt der QuellePourmir, Mohammad Reza, Reza Monsefi und Ghosheh Abed Hodtani. „Investigation of the performance of multi-input multi-output detectors based on deep learning in non-Gaussian environments“. International Journal of Electrical and Computer Engineering (IJECE) 13, Nr. 4 (01.08.2023): 4169. http://dx.doi.org/10.11591/ijece.v13i4.pp4169-4183.
Der volle Inhalt der QuelleThuiner, P., F. Resnati, S. Franchino, D. Gonzalez Diaz, R. Hall-Wilton, H. Müller, E. Oliveri et al. „Multi-GEM Detectors in High Particle Fluxes“. EPJ Web of Conferences 174 (2018): 05001. http://dx.doi.org/10.1051/epjconf/201817405001.
Der volle Inhalt der QuelleRumaiz, A. K., A. J. Kuczewski, J. Mead, E. Vernon, D. Pinelli, E. Dooryhee, S. Ghose et al. „Multi-element germanium detectors for synchrotron applications“. Journal of Instrumentation 13, Nr. 04 (27.04.2018): C04030. http://dx.doi.org/10.1088/1748-0221/13/04/c04030.
Der volle Inhalt der QuelleLux, T., O. Ballester, J. Illa, G. Jover, C. Martin, J. Rico und F. Sanchez. „A Multi-APD readout for EL detectors“. Journal of Physics: Conference Series 309 (10.08.2011): 012008. http://dx.doi.org/10.1088/1742-6596/309/1/012008.
Der volle Inhalt der QuelleMilnes, James, Jon S. Lapington, Ottmar Jagutzki und Jon Howorth. „Image charge multi-role and function detectors“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 604, Nr. 1-2 (Juni 2009): 218–20. http://dx.doi.org/10.1016/j.nima.2009.01.179.
Der volle Inhalt der QuelleDissertationen zum Thema "Multi-detectors"
Dauler, Eric A. (Eric Anthony) 1980. „Multi-element superconducting nanowire single photon detectors“. Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/46377.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 140-148).
Single-photon-detector arrays can provide unparalleled performance and detailed information in applications that require precise timing and single photon sensitivity. Such arrays have been demonstrated using a number of single-photon-detector technologies, but the high performance of superconducting nanowire single photon detectors (SNSPDs) and the unavoidable overhead of cryogenic cooling make SNSPDs particularly likely to be used in applications that require detectors with the highest performance available. These applications are also the most likely to benefit from and fully utilize the large amount of information and performance advantages provided by a single-photon-detector array.Although the performance advantages of individual superconducting nanowire single photon detectors (SNSPDs) have been investigated since their first demonstration in 2001, the advantages gained by building arrays of multiple SNSPDs may be even more unique among single photon detector technologies. First, the simplicity and nanoscale dimensions of these detectors make it possible to easily operate multiple elements and to closely space these elements such that the active area of an array is essentially identical to that of a single element. This ability to eliminate seam-loss between elements, as well as the performance advantages gained by using multiple smaller elements, makes the multi-element approach an attractive way to increase the general detector performance (detection efficiency and maximum counting rate) as well as to provide new capabilities (photon-number, spatial, and spectral resolution). Additionally, in contrast to semiconductor-based single-photon detectors, SNSPDs have a negligible probability of spontaneously emitting photons during the detection process, eliminating a potential source of crosstalk between array elements.
(cont.) However, the SNSPD can be susceptible to other forms of crosstalk, such as thermal or electromagnetic interactions between elements, so it was important to investigate the operation and limitations of multi-element SNSPDs. This thesis will introduce the concept of a multi-element SNSPD with a continuous active area and will investigate its performance advantages, its potential drawbacks and finally its application to intensity correlation measurements.This work is sponsored by the United States Air Force under Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government.
by Eric Dauler.
Ph.D.
Izdebski, Frauke. „Quantum correlations measured with multi-pixel detectors“. Thesis, Heriot-Watt University, 2013. http://hdl.handle.net/10399/2705.
Der volle Inhalt der QuelleGinsz, Michaël. „Characterization of high-purity, multi-segmented germanium detectors“. Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAE047/document.
Der volle Inhalt der QuelleRecent developments of electrical segmentation of HPGe detectors, coupled with digital electronics have led to promising applications such as γ-ray tracking, γ-ray imaging or low-background measurements which will benefit from a fine knowledge of the detector response. The IPHC has developed a new scanning table which uses a collimated γ-ray beam to investigate the detector response as a function of the location of the γ-ray interaction. It is designed to use the Pulse Shape Comparison Scan technique, which has been simulated in order to prove its efficiency. An AGATA detector has been thoroughly scanned. 2D classical scans brought out, for example, local charge collection modification effects such as charge sharing, due to the segmentation. For the first time, a 3D, complete pulse-shape database has been established. It will especially allow to improve the overall AGATA array performances
Lundqvist, Mats. „Silicon Strip Detectors for Scanned Multi-Slit X-Ray Imaging“. Doctoral thesis, KTH, Physics, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3519.
Der volle Inhalt der QuelleDigital imaging systems for medical applications must bebased upon highly efficient detectors to ensure low patientdose. This is particularly important in screening mammographybecause of the large number healthy women that is examined. Amammography system must also provide high spatial and contrastresolution. Different approaches are compared in this thesis,and it is argued that a system based on photon countingdetectors in a scanned multi-slit geometry provides aperformance superior to established technologies.
The system is realized using silicon strip detectorsirradiated at a small angle relative to the wafer surface,thereby offering large absorption depth. A linear pixelarray isscanned across the breast to obtain the complete image.Pulse-processing electronics rejecting all detector andelectronics noise count the number of photons that aredetected, forming the pixel values of the image.
Optimization of the detector design is discussed in detail.The detector has been carefully simulated to investigate chargemotion and signal formation after photoninteraction. Based onthese simulations, the impact of the detector characteristicson the image quality has been evaluated.
Detectors have been manufactured and evaluated both assingle components and as part of experimental imaging devicesincluding custom readout electronics. Presented in this thesisare the measured detector characteristics including a verifi-cation of charge collection efficiency and confirmation thatthe quantum efficiency is 90% for a typical mammographyspectrum. Modulation transfer functions and noise power spectrawere recorded and the detective quantum efficiency calculated.A prototype mammography system was also assembled and themodulation transfer function recorded. The interpretation ofthe modulation transfer function and detective quantumefficiency is discussed for digital systems in general and fora scanned multi-slit system in particular.
Keywords:x-ray, imaging, silicon, detector, digital,mammography, scanning, photon counting.
Wigg, Peter. „Coupling the INDRA and VAMOS multi-detectors for symmetry energy studies“. Thesis, University of Liverpool, 2015. http://livrepository.liverpool.ac.uk/2036706/.
Der volle Inhalt der QuelleSmale, Nigel John. „Multi-anode photon-multiplier readout electronics for the LHCb ring imaging Cherenkov detectors“. Thesis, University of Oxford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.410667.
Der volle Inhalt der QuelleAnnalingam, Dheveegar David. „Blind adaptive multi user interference cancellation detectors and antenna array for CDMA systems“. Thesis, University of Sussex, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.435615.
Der volle Inhalt der QuelleAl-Wazzan, Raied Ahmed. „Multi-channel detectors and their application to the spectroscopy of laser produced plasmas“. Thesis, Queen's University Belfast, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318954.
Der volle Inhalt der QuelleChen, Jiajun. „Modal optical studies of multi-moded ultra-low-noise detectors in far-infrared“. Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/270352.
Der volle Inhalt der QuelleMashwama, Derrick Bonginkosi. „Performance of turbo multi-user detectors in space-time coded DS-CDMA systems“. Master's thesis, University of Cape Town, 2007. http://hdl.handle.net/11427/5169.
Der volle Inhalt der QuelleIn this thesis we address the problem of improving the uplink capacity and the performance of a DS-CDMA system by combining MUD and turbo decoding. These two are combined following the turbo principle. Depending on the concatenation scheme used, we divide these receivers into the Partitioned Approach (PA) and the Iterative Approach (IA) receivers. To enable the iterative exchange of information, these receivers employ a Parallel Interference Cancellation (PIC) detector as the first receiver stage.
Bücher zum Thema "Multi-detectors"
H, Larsen, und European Organization for Nuclear Research., Hrsg. Radiation tests on service electronics for future multi TeV detectors. Geneva: CERN, 1993.
Den vollen Inhalt der Quelle findenHowlett, Joseph. Liquid-phase purification for multi-ton xenon detectors and a search for dark matter and neutrinos in XENON1T. [New York, N.Y.?]: [publisher not identified], 2022.
Den vollen Inhalt der Quelle findenRaol, J. R. Multi-sensor data fusion with MATLAB. Boca Raton: Taylor & Francis, 2010.
Den vollen Inhalt der Quelle findenRaol, J. R. Multi-sensor data fusion with MATLAB. Boca Raton: CRC Press, 2010.
Den vollen Inhalt der Quelle findenRaol, J. R. Multi-sensor data fusion with MATLAB. Boca Raton: Taylor & Francis, 2010.
Den vollen Inhalt der Quelle findenJaworski, Ryszard. Multi-subject polygraph examination. Wrocław: Wydawn. Uniwersytetu Wrocławskiego, 2008.
Den vollen Inhalt der Quelle findenScott, Hubbard G., und United States. National Aeronautics and Space Administration., Hrsg. Multi-line gamma-ray spectrometer performance of a Si(Li) detector stack. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Den vollen Inhalt der Quelle findenMulti-sensor data fusion with MATLAB. Boca Raton: Taylor & Francis, 2010.
Den vollen Inhalt der Quelle findenNational Exposure Research Laboratory (U.S.), Sandia National Laboratories und United States. Environmental Protection Agency, Hrsg. Photoacoustic infrared monitor: Innova AirTech Instruments type 1312 multi-gas monitor. Las Vegas, Nev: National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 1998.
Den vollen Inhalt der Quelle findenEinfeld, Wayne. Photoacoustic infrared monitor: Innova AirTech Instruments type 1312 multi-gas monitor. Las Vegas, Nev: National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 1998.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Multi-detectors"
Xie, Feng, Andy Song und Vic Ciesielski. „Evolving Event Detectors in Multi-channel Sensor Data“. In Lecture Notes in Computer Science, 731–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-35101-3_62.
Der volle Inhalt der QuelleArdö, Håkan, Mikael Nilsson und Rikard Berthilsson. „Flow Counting Using Realboosted Multi-sized Window Detectors“. In Computer Vision – ECCV 2012. Workshops and Demonstrations, 193–202. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33885-4_20.
Der volle Inhalt der QuelleYan, Haofeng, Yiming Wu, Ming Xu, Ting Wu, Jian Xu und Tong Qiao. „Resilient Consensus for Multi-agent Networks with Mobile Detectors“. In Neural Information Processing, 291–302. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04239-4_26.
Der volle Inhalt der QuelleHartig, Roland, Yury Prokazov, Evgeny Turbin und Werner Zuschratter. „Wide-Field Fluorescence Lifetime Imaging with Multi-anode Detectors“. In Methods in Molecular Biology, 457–80. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-649-8_20.
Der volle Inhalt der QuelleGuzzi, Francesco, George Kourousias, Fulvio Billé, Gioia Di Credico, Alessandra Gianoncelli und Sergio Carrato. „Signal Alignment Problems on Multi-element X-Ray Fluorescence Detectors“. In Lecture Notes in Electrical Engineering, 173–79. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95498-7_24.
Der volle Inhalt der QuelleBranchesi, Marica. „Multi-messenger Astronomy“. In Springer Proceedings in Physics, 255–66. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23042-4_19.
Der volle Inhalt der QuelleZhang, Zhenqiu, Yuxiao Hu, Ming Liu und Thomas Huang. „Head Pose Estimation in Seminar Room Using Multi View Face Detectors“. In Multimodal Technologies for Perception of Humans, 299–304. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-69568-4_27.
Der volle Inhalt der QuelleMilgram, Maurice, Rachid Belaroussi und Lionel Prevost. „Multi-stage Combination of Geometric and Colorimetric Detectors for Eyes Localization“. In Image Analysis and Processing – ICIAP 2005, 1010–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11553595_124.
Der volle Inhalt der QuelleGranese, Federica, Marine Picot, Marco Romanelli, Francesco Messina und Pablo Piantanida. „MEAD: A Multi-Armed Approach for Evaluation of Adversarial Examples Detectors“. In Machine Learning and Knowledge Discovery in Databases, 286–303. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-26409-2_18.
Der volle Inhalt der QuelleKryshkin, V. „Use of Wave Length Shifting Fibres in Multi-Sensor High Energy Physics Detectors“. In Multisensor Fusion, 905–9. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0556-2_49.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Multi-detectors"
Zou, Kai, Yun Meng, Nan Hu, Yifang Feng, Zifan Hao, Samuel Gyger, Stephan Steinhauer, Val Zwiller und Xiaolong Hu. „Superconducting Nanowire Single-Photon Detectors and Multi-Photon Detectors“. In Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/quantum.2022.qw3b.1.
Der volle Inhalt der QuelleRyzhikov, Volodimer D., Dmitro Kozin, Olena Lysetskaya und Sergey Kostyukevich. „Detectors for multi-energy radiography“. In Optical Science and Technology, SPIE's 48th Annual Meeting, herausgegeben von Larry A. Franks, Arnold Burger, Ralph B. James und Paul L. Hink. SPIE, 2004. http://dx.doi.org/10.1117/12.504031.
Der volle Inhalt der QuelleZou, Kai, Yun Meng, Zhao Wang und Xiaolong Hu. „Supeconducting nanowire multi-photon detectors“. In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_qels.2020.ff3d.3.
Der volle Inhalt der QuelleRossler, C. W., M. J. Minardi, E. Ertin und R. L. Moses. „Optimal detectors for multi-target environments“. In 2012 IEEE Radar Conference (RadarCon). IEEE, 2012. http://dx.doi.org/10.1109/radar.2012.6212275.
Der volle Inhalt der QuelleQi, Qi, Kui Zhang, Wuxue Tan und Mengxing Huang. „Object Detection with Multi-RCNN Detectors“. In ICMLC 2018: 2018 10th International Conference on Machine Learning and Computing. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3195106.3195120.
Der volle Inhalt der QuellePerera, A. G. U., Y. Aytac, G. Ariyawansa, S. G. Matsik, M. Buchanan, Z. R. Wasilewski, S. Bhowmich et al. „Photo detectors for multi-spectral sensing“. In 2011 IEEE 11th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2011. http://dx.doi.org/10.1109/nano.2011.6144295.
Der volle Inhalt der QuelleJampa, Woranut, Chousak Jantaco, Chuchart Pintavirooj und Manas Sangworasil. „Multi-Module of X-Ray Array Detectors“. In 2008 International Symposium on Communications and Information Technologies (ISCIT). IEEE, 2008. http://dx.doi.org/10.1109/iscit.2008.4700252.
Der volle Inhalt der QuelleZiliani, F., und A. Cavallaro. „Evaluation of multi-sensor surveillance event detectors“. In IET Conference on Crime and Security. IEE, 2006. http://dx.doi.org/10.1049/ic:20060353.
Der volle Inhalt der QuelleRosenberg, Jessie, Oskar Painter, Rajeev V. Shenoi, Thomas E. Vandervelde und Sanjay Krishna. „Multi-Spectral Surface-Plasmon Resonant Infrared Detectors“. In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.jthf3.
Der volle Inhalt der QuelleLan Zhang, Yuanjing Li, Xiaocui Zheng, Zhi Deng, Weibin Zhu und Nan Yao. „Multi-energy detection using CdZnTe semiconductor detectors“. In 2008 IEEE Nuclear Science Symposium and Medical Imaging conference (2008 NSS/MIC). IEEE, 2008. http://dx.doi.org/10.1109/nssmic.2008.4775200.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Multi-detectors"
Berenstein, Carlos. Deconvolution Methods for Multi-Detectors. Fort Belvoir, VA: Defense Technical Information Center, August 1989. http://dx.doi.org/10.21236/ada213568.
Der volle Inhalt der QuelleLudewigt, B. A., C. S. Rossington und K. Chapman. Spectral response of multi-element silicon detectors. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/603685.
Der volle Inhalt der QuelleLyo, Sungkwun Kenneth, Michael Clement Wanke, John Louis Reno, Eric Arthur Shaner und Albert D. Grine. Terahertz detectors for long wavelength multi-spectral imaging. Office of Scientific and Technical Information (OSTI), Oktober 2007. http://dx.doi.org/10.2172/921735.
Der volle Inhalt der QuelleRay, Jaideep, Fulton Wang und Christopher Young. A Multi-Instance learning Framework for Seismic Detectors. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1673169.
Der volle Inhalt der QuelleCarmichael, Joshua Daniel. Multi-Channel Correlation Detectors: Accounting for and Reducing Non-target Detections. Office of Scientific and Technical Information (OSTI), Juni 2015. http://dx.doi.org/10.2172/1186031.
Der volle Inhalt der QuelleAnderson, John T. Multi-purpose γ-Ray Interface to Auxiliary Detectors (MyRIAD) User Manual. Office of Scientific and Technical Information (OSTI), April 2015. http://dx.doi.org/10.2172/1177968.
Der volle Inhalt der QuelleManasreh, Omar. Multi-color Long Wavelength Infrared Detectors Based On III-V Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, Juli 2010. http://dx.doi.org/10.21236/ada562554.
Der volle Inhalt der QuelleHennig, Wolfgang. High-speed, multi-channel detector readout electronics for fast radiation detectors. Office of Scientific and Technical Information (OSTI), Juni 2012. http://dx.doi.org/10.2172/1043826.
Der volle Inhalt der QuelleMicroBooNE. The Pandora multi-algorithm approach to automated pattern recognition in LAr TPC detectors. Office of Scientific and Technical Information (OSTI), Juli 2016. http://dx.doi.org/10.2172/1573048.
Der volle Inhalt der QuelleKay, Alexander William. Multi-atom resonant photoemission and the development of next-generation software and high-speed detectors for electron spectroscopy. Office of Scientific and Technical Information (OSTI), September 2000. http://dx.doi.org/10.2172/767636.
Der volle Inhalt der Quelle