Zeitschriftenartikel zum Thema „MULTIBAND METAMATERIAL ABSORBER (MMA)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "MULTIBAND METAMATERIAL ABSORBER (MMA)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Mohanty, Ayesha, Om Prakash Acharya, Bhargav Appasani, Kriangkrai Sooksood, and Sushanta Kumar Mohapatra. "A THz Metamaterial Absorber with Multiple Polarization - Insensitive, Sensitive, and Tunable." ECTI Transactions on Electrical Engineering, Electronics, and Communications 19, no. 2 (2021): 165–73. http://dx.doi.org/10.37936/ecti-eec.2021192.242019.
Der volle Inhalt der QuelleSaxena, G., Y. Khanna, Y. K. Awasthi, and P. Jain. "Multi-Band Polarization Insensitive Ultra-Thin THz Metamaterial Absorber for Imaging and EMI Shielding Applications." Advanced Electromagnetics 10, no. 3 (2021): 43–49. http://dx.doi.org/10.7716/aem.v10i3.1759.
Der volle Inhalt der QuelleHakim, Mohammad Lutful, Touhidul Alam, Mohammad Tariqul Islam, Mohd Hafiz Baharuddin, Ahmed Alzamil, and Md Shabiul Islam. "Quad-Band Polarization-Insensitive Square Split-Ring Resonator (SSRR) with an Inner Jerusalem Cross Metamaterial Absorber for Ku- and K-Band Sensing Applications." Sensors 22, no. 12 (2022): 4489. http://dx.doi.org/10.3390/s22124489.
Der volle Inhalt der QuelleWang, Wenjie, Mingde Feng, Jun Wang, et al. "Quadruple-band metamaterial absorber based on the cuboid dielectric particles." Journal of Advanced Dielectrics 08, no. 04 (2018): 1850023. http://dx.doi.org/10.1142/s2010135x18500236.
Der volle Inhalt der QuelleHossain, I., M. Samsuzzaman, M. S. J. Singh, B. B. Bais, and M. T. Islam. "Numerical investigation of polarization-insensitive multiband metamaterial for terahertz solar absorber." Digest Journal of Nanomaterials and Biostructures 16, no. 2 (2021): 593–600. http://dx.doi.org/10.15251/djnb.2021.162.593.
Der volle Inhalt der QuelleWu, Han, Shijun Ji, Ji Zhao, Chengxin Jiang, and Handa Dai. "Design and Analysis of a Five-Band Polarization-Insensitive Metamaterial Absorber." International Journal of Antennas and Propagation 2020 (December 7, 2020): 1–12. http://dx.doi.org/10.1155/2020/8827517.
Der volle Inhalt der QuelleHannan, Islam, Hoque, Singh, and Almutairi. "Design of a Novel Double Negative Metamaterial Absorber Atom for Ku and K Band Applications." Electronics 8, no. 8 (2019): 853. http://dx.doi.org/10.3390/electronics8080853.
Der volle Inhalt der QuelleGu, Chao, Shao-Bo Qu, Zhi-Bin Pei, Zhuo Xu, Jia Liu, and Wei Gu. "Multiband terahertz metamaterial absorber." Chinese Physics B 20, no. 1 (2011): 017801. http://dx.doi.org/10.1088/1674-1056/20/1/017801.
Der volle Inhalt der QuelleXu, Zong-Cheng, Run-Mei Gao, Chun-Feng Ding, Ya-Ting Zhang, and Jian-Quan Yao. "Multiband Metamaterial Absorber at Terahertz Frequencies." Chinese Physics Letters 31, no. 5 (2014): 054205. http://dx.doi.org/10.1088/0256-307x/31/5/054205.
Der volle Inhalt der QuelleTian, Yiran, Guangjun Wen, and Yongjun Huang. "Multiband Negative Permittivity Metamaterials and Absorbers." Advances in OptoElectronics 2013 (July 28, 2013): 1–7. http://dx.doi.org/10.1155/2013/269170.
Der volle Inhalt der QuelleZou, Jinglan, Jianfa Zhang, Yuwen He, Qilin Hong, Cong Quan, and Zhihong Zhu. "Multiband metamaterial selective absorber for infrared stealth." Applied Optics 59, no. 28 (2020): 8768. http://dx.doi.org/10.1364/ao.405015.
Der volle Inhalt der QuelleGao, Runmei, Zongcheng Xu, Chunfeng Ding, Liang Wu, and Jianquan Yao. "Graphene metamaterial for multiband and broadband terahertz absorber." Optics Communications 356 (December 2015): 400–404. http://dx.doi.org/10.1016/j.optcom.2015.08.023.
Der volle Inhalt der QuelleJung, Seungwon, Young Ju Kim, Young Joon Yoo, et al. "High-Order Resonance in a Multiband Metamaterial Absorber." Journal of Electronic Materials 49, no. 3 (2019): 1677–88. http://dx.doi.org/10.1007/s11664-019-07661-1.
Der volle Inhalt der QuelleChen, Xu, and Wenhui Fan. "Ultra-flexible polarization-insensitive multiband terahertz metamaterial absorber." Applied Optics 54, no. 9 (2015): 2376. http://dx.doi.org/10.1364/ao.54.002376.
Der volle Inhalt der QuelleLee, Hong-Min, and Hyung-Sup Lee. "A Method for Extending the Bandwidth of Metamaterial Absorber." International Journal of Antennas and Propagation 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/859429.
Der volle Inhalt der QuelleMuthukrishnan, Kavitha, and Venkateswaran Narasimhan. "Multiband Terahertz Metamaterial Absorber Based on Multipolar Plasmonic Resonances." Plasmonics 16, no. 4 (2021): 1049–57. http://dx.doi.org/10.1007/s11468-020-01322-4.
Der volle Inhalt der QuelleLuo, Zhiyou, Shijun Ji, Ji Zhao, Han Wu, and Handa Dai. "A multiband metamaterial absorber for GHz and THz simultaneously." Results in Physics 30 (November 2021): 104893. http://dx.doi.org/10.1016/j.rinp.2021.104893.
Der volle Inhalt der QuelleHu, Fangrong, Li Wang, Baogang Quan, et al. "Design of a polarization insensitive multiband terahertz metamaterial absorber." Journal of Physics D: Applied Physics 46, no. 19 (2013): 195103. http://dx.doi.org/10.1088/0022-3727/46/19/195103.
Der volle Inhalt der QuelleZhao, Wenhan, Junqiao Wang, Ran Li, and Bin Zhang. "Ultranarrow dual-band metamaterial perfect absorber and its sensing application." Journal of Optics 24, no. 3 (2022): 035103. http://dx.doi.org/10.1088/2040-8986/ac4aba.
Der volle Inhalt der QuelleSong, Shitong, Fanyi Liu, Limei Qi, Zhao Zhang, Haodong Wang, and Yuting Zhou. "A MoS2-based broadband and multiband metamaterial absorber in the visible band." Modern Physics Letters B 34, no. 34 (2020): 2050397. http://dx.doi.org/10.1142/s0217984920503972.
Der volle Inhalt der QuelleGuo, Tian-Long, Fangfang Li, and Matthieu Roussey. "Dielectric multilayer cavity coupled metamaterial." EPJ Web of Conferences 287 (2023): 04027. http://dx.doi.org/10.1051/epjconf/202328704027.
Der volle Inhalt der QuelleChowdhury, Md Zikrul Bari, Mohammad Tariqul Islam, Ahasanul Hoque, et al. "Design and Parametric Analysis of a Wide-Angle and Polarization Insensitive Ultra-Broadband Metamaterial Absorber for Visible Optical Wavelength Applications." Nanomaterials 12, no. 23 (2022): 4253. http://dx.doi.org/10.3390/nano12234253.
Der volle Inhalt der QuelleHossain, Ismail, Md Samsuzzaman, Mohd Hafiz Baharuddin, Norsuzlin Binti Mohd Sahar, Mandeep Singh Jit Singh, and Mohammad Tariqul Islam. "Computational Investigation of Multiband EMNZ Metamaterial Absorber for Terahertz Applications." Computers, Materials & Continua 71, no. 2 (2022): 3905–20. http://dx.doi.org/10.32604/cmc.2022.022027.
Der volle Inhalt der QuelleZhang, Man, and Zhengyong Song. "Switchable terahertz metamaterial absorber with broadband absorption and multiband absorption." Optics Express 29, no. 14 (2021): 21551. http://dx.doi.org/10.1364/oe.432967.
Der volle Inhalt der QuelleLv, Yisong, Jinping Tian, and Rongcao Yang. "Multiband tunable perfect metamaterial absorber realized by different graphene patterns." Journal of the Optical Society of America B 38, no. 8 (2021): 2409. http://dx.doi.org/10.1364/josab.428026.
Der volle Inhalt der QuelleYahiaoui, Riad, Jean Paul Guillet, Frédérick de Miollis, and Patrick Mounaix. "Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications." Optics Letters 38, no. 23 (2013): 4988. http://dx.doi.org/10.1364/ol.38.004988.
Der volle Inhalt der QuelleJiang, Hao, Zhenghui Xue, Weiming Li, and Wu Ren. "Multiband polarisation insensitive metamaterial absorber based on circular fractal structure." IET Microwaves, Antennas & Propagation 10, no. 11 (2016): 1141–45. http://dx.doi.org/10.1049/iet-map.2015.0789.
Der volle Inhalt der QuelleLiao, Y. L., and Y. Zhao. "A multiband polarization-insensitive metamaterial absorber in the infrared regime." Indian Journal of Physics 89, no. 2 (2014): 195–98. http://dx.doi.org/10.1007/s12648-014-0550-2.
Der volle Inhalt der QuelleWu, Han, Shijun Ji, Ji Zhao, Zhiyou Luo, and Handa Dai. "Design and Analysis of a Triple-band Non-zonal Polarization Electromagnetic Metamaterial Absorber." Applied Computational Electromagnetics Society 36, no. 6 (2021): 697–706. http://dx.doi.org/10.47037/2020.aces.j.360611.
Der volle Inhalt der QuelleAli, Hema Omer, and Asaad M. Al-Hindawi. "A Ultra-broadband Thin Metamaterial Absorber for Ku and K Bands Applications." Journal of Engineering 27, no. 5 (2021): 1–16. http://dx.doi.org/10.31026/j.eng.2021.05.01.
Der volle Inhalt der QuelleHakim, Mohammad Lutful, Abu Hanif, Touhidul Alam, et al. "Ultrawideband Polarization-Independent Nanoarchitectonics: A Perfect Metamaterial Absorber for Visible and Infrared Optical Window Applications." Nanomaterials 12, no. 16 (2022): 2849. http://dx.doi.org/10.3390/nano12162849.
Der volle Inhalt der QuelleA., Elakkiya, Radha Sankararajan, Sreeja B.S., and Manikandan E. "Modified I-shaped hexa-band near perfect terahertz metamaterial absorber." Circuit World 46, no. 4 (2020): 281–84. http://dx.doi.org/10.1108/cw-11-2019-0155.
Der volle Inhalt der QuelleLuo, Hao, and Yong Zhi Cheng. "Design of an ultrabroadband visible metamaterial absorber based on three-dimensional metallic nanostructures." Modern Physics Letters B 31, no. 25 (2017): 1750231. http://dx.doi.org/10.1142/s0217984917502311.
Der volle Inhalt der QuelleEl Assal, Aicha, Hanadi Breiss, Ratiba Benzerga, Ala Sharaiha, Akil Jrad, and Ali Harmouch. "Toward an Ultra-Wideband Hybrid Metamaterial Based Microwave Absorber." Micromachines 11, no. 10 (2020): 930. http://dx.doi.org/10.3390/mi11100930.
Der volle Inhalt der QuelleTang, Yibo, Longhui He, Anfeng Liu, Cuixiu Xiong, and Hui Xu. "Optically transparent metamaterial absorber based on Jerusalem cross structure at S-band frequencies." Modern Physics Letters B 34, no. 16 (2020): 2050175. http://dx.doi.org/10.1142/s0217984920501754.
Der volle Inhalt der QuelleChen, Fu, Yongzhi Cheng, and Hui Luo. "A Broadband Tunable Terahertz Metamaterial Absorber Based on Single-Layer Complementary Gammadion-Shaped Graphene." Materials 13, no. 4 (2020): 860. http://dx.doi.org/10.3390/ma13040860.
Der volle Inhalt der QuelleWang Wen-Jie, Wang Jia-Fu, Yan Ming-Bao, et al. "Ultra-thin multiband metamaterial absorber based on multi-order plasmon resonances." Acta Physica Sinica 63, no. 17 (2014): 174101. http://dx.doi.org/10.7498/aps.63.174101.
Der volle Inhalt der QuelleTran, Cuong Manh, Hai Van Pham, Hien Thuy Nguyen, Thuy Thi Nguyen, Lam Dinh Vu, and Tung Hoang Do. "Creating Multiband and Broadband Metamaterial Absorber by Multiporous Square Layer Structure." Plasmonics 14, no. 6 (2019): 1587–92. http://dx.doi.org/10.1007/s11468-019-00953-6.
Der volle Inhalt der QuelleGunduz, O. T., and C. Sabah. "Polarization angle independent perfect multiband metamaterial absorber and energy harvesting application." Journal of Computational Electronics 15, no. 1 (2015): 228–38. http://dx.doi.org/10.1007/s10825-015-0735-8.
Der volle Inhalt der QuelleMulla, Batuhan, and Cumali Sabah. "Ultrathin thermally stable multiband metamaterial absorber design for solar energy applications." Journal of Nanophotonics 12, no. 01 (2018): 1. http://dx.doi.org/10.1117/1.jnp.12.016005.
Der volle Inhalt der QuelleLi, Xiaoman, He Feng, Maojin Yun, et al. "Polarization-independent and all-optically modulated multiband metamaterial coherent perfect absorber." Optics & Laser Technology 166 (November 2023): 109644. http://dx.doi.org/10.1016/j.optlastec.2023.109644.
Der volle Inhalt der QuelleHakim, Mohammad Lutful, Mohammad Tariqul Islam, Touhidul Alam, et al. "Triple-Band Square Split-Ring Resonator Metamaterial Absorber Design with High Effective Medium Ratio for 5G Sub-6 GHz Applications." Nanomaterials 13, no. 2 (2023): 222. http://dx.doi.org/10.3390/nano13020222.
Der volle Inhalt der QuelleQi, Buxiong, Wenqiong Chen, Tiaoming Niu, and Zhonglei Mei. "Ultra-Broadband Refractory All-Metal Metamaterial Selective Absorber for Solar Thermal Energy Conversion." Nanomaterials 11, no. 8 (2021): 1872. http://dx.doi.org/10.3390/nano11081872.
Der volle Inhalt der QuelleLuo, Zhiyou, Shijun Ji, Ji Zhao, Zhenze Liu, and Handa Dai. "An ultra-thin flexible conformal four-band metamaterial absorber applied in S-/C-/X-band." Physica Scripta 97, no. 4 (2022): 045813. http://dx.doi.org/10.1088/1402-4896/ac5bbe.
Der volle Inhalt der QuelleAlsulami, Qana A., S. Wageh, Ahmed A. Al-Ghamdi, Rana Muhammad Hasan Bilal, and Muhammad Ahsan Saeed. "A Tunable and Wearable Dual–Band Metamaterial Absorber Based on Polyethylene Terephthalate (PET) Substrate for Sensing Applications." Polymers 14, no. 21 (2022): 4503. http://dx.doi.org/10.3390/polym14214503.
Der volle Inhalt der QuelleSharma, Atipriya, Ravi Panwar, and Rajesh Khanna. "Development of Single layered, Wide angle, Polarization insensitive Metamaterial Absorber." Defence Science Journal 71, no. 03 (2021): 372–77. http://dx.doi.org/10.14429/dsj.71.16701.
Der volle Inhalt der QuelleEvangeline Persis, G. P., J. John Paul, Thusnavis Bella Mary, and R. Catherine Joy. "A compact tilted split ring multiband metamaterial absorber for energy harvesting applications." Materials Today: Proceedings 56 (2022): 368–72. http://dx.doi.org/10.1016/j.matpr.2022.01.206.
Der volle Inhalt der QuelleXiao, Dong, and Keyu Tao. "Ultra-compact metamaterial absorber for multiband light absorption at mid-infrared frequencies." Applied Physics Express 8, no. 10 (2015): 102001. http://dx.doi.org/10.7567/apex.8.102001.
Der volle Inhalt der QuelleMulla, Batuhan, and Cumali Sabah. "Multiband Metamaterial Absorber Design Based on Plasmonic Resonances for Solar Energy Harvesting." Plasmonics 11, no. 5 (2016): 1313–21. http://dx.doi.org/10.1007/s11468-015-0177-y.
Der volle Inhalt der QuelleAksimsek, Sinan. "Design of an ultra-thin, multiband, micro-slot based terahertz metamaterial absorber." Journal of Electromagnetic Waves and Applications 34, no. 16 (2020): 2181–93. http://dx.doi.org/10.1080/09205071.2020.1809532.
Der volle Inhalt der Quelle