Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „NANO BIOACTIVE GLASS“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "NANO BIOACTIVE GLASS" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "NANO BIOACTIVE GLASS"
Odermatt, Reto, Matej Par, Dirk Mohn, Daniel B. Wiedemeier, Thomas Attin und Tobias T. Tauböck. „Bioactivity and Physico-Chemical Properties of Dental Composites Functionalized with Nano- vs. Micro-Sized Bioactive Glass“. Journal of Clinical Medicine 9, Nr. 3 (12.03.2020): 772. http://dx.doi.org/10.3390/jcm9030772.
Der volle Inhalt der QuelleNabian, Nima, Maedeh Delavar, Mahmood Rabiee und Mohsen Jahanshahi. „Quenched/unquenched nano bioactive glass-ceramics: Synthesis and in vitro bioactivity evaluation in Ringer’s solution with BSA“. Chemical Industry and Chemical Engineering Quarterly 19, Nr. 2 (2013): 231–39. http://dx.doi.org/10.2298/ciceq120323057n.
Der volle Inhalt der QuelleAl-Sayed, Fatema Aziz, Radwa Hamed Hegazy, Zeinab Amin Salem und Hanan Hassan El-Beheiry. „COMBINED USE OF HYALURONIC ACID WITH NANO-BIOACTIVE GLASS ENHANCED BIOCEMENT BASED SILICATE STIMULATED BONE REGENERATIVE CAPACITY IN TIBIAL BONE DEFECTS OF RABBITS: IN-VIVO STUDY“. Journal of Experimental Biology and Agricultural Sciences 9, Nr. 5 (30.10.2021): 630–38. http://dx.doi.org/10.18006/2021.9(5).630.638.
Der volle Inhalt der QuelleAnitha, D. R., und P. Jayashri. „Nano Structured Bioactive Glass on Dental Disease“. Indian Journal of Public Health Research & Development 10, Nr. 11 (2019): 3459. http://dx.doi.org/10.5958/0976-5506.2019.04118.4.
Der volle Inhalt der QuelleNawaz, Qaisar, Araceli de Pablos-Martín, Lutz Berthold, Juliana Martins de Souza e Silva, Katrin Hurle und Aldo R. Boccaccini. „Mapping the elemental and crystalline phase distribution in Cu2+ doped 45S5 bioactive glass upon crystallization“. CrystEngComm 24, Nr. 2 (2022): 284–93. http://dx.doi.org/10.1039/d1ce01160j.
Der volle Inhalt der QuelleWaltimo, T., T. J. Brunner, M. Vollenweider, W. J. Stark und M. Zehnder. „Antimicrobial Effect of Nanometric Bioactive Glass 45S5“. Journal of Dental Research 86, Nr. 8 (August 2007): 754–57. http://dx.doi.org/10.1177/154405910708600813.
Der volle Inhalt der QuelleAguilar-Pérez, Fernando J., Rossana F. Vargas-Coronado, Jose M. Cervantes-Uc, Juan V. Cauich-Rodríguez, Cristian Covarrubias und Merhdad Pedram-Yazdani. „Preparation and bioactive properties of nano bioactive glass and segmented polyurethane composites“. Journal of Biomaterials Applications 30, Nr. 9 (14.01.2016): 1362–72. http://dx.doi.org/10.1177/0885328215626361.
Der volle Inhalt der QuelleRocton, N., H. Oudadesse, S. Mosbahi, L. Bunetel, P. Pellen-Mussi und B. Lefeuvre. „Study of nano bioactive glass for use as bone biomaterial comparison with micro bioactive glass behaviour“. IOP Conference Series: Materials Science and Engineering 628 (08.10.2019): 012005. http://dx.doi.org/10.1088/1757-899x/628/1/012005.
Der volle Inhalt der QuelleMoawad, H. M. M., und H. Jain. „Development of nano-macroporous soda-lime phosphofluorosilicate bioactive glass and glass-ceramics“. Journal of Materials Science: Materials in Medicine 20, Nr. 7 (28.02.2009): 1409–18. http://dx.doi.org/10.1007/s10856-009-3711-7.
Der volle Inhalt der QuelleSarmast Sh, M., S. George, A. B. Dayang Radiah, D. Hoey, N. Abdullah und S. Kamarudin. „Synthesis of bioactive glass using cellulose nano fibre template“. Journal of the Mechanical Behavior of Biomedical Materials 130 (Juni 2022): 105174. http://dx.doi.org/10.1016/j.jmbbm.2022.105174.
Der volle Inhalt der QuelleDissertationen zum Thema "NANO BIOACTIVE GLASS"
Ravarian, Roya. „The Effect of Nano-Scale Interaction on the Physico-Chemical Properties of Polymer-Bioactive Glass Composites“. Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/10147.
Der volle Inhalt der QuelleMabrouk, Mohamed Mostafa. „Preparation of PVA / Bioactive Glass nanocomposite scaffolds : in vitro studies for applications as biomaterials : association with active molecule“. Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1S063/document.
Der volle Inhalt der QuelleThe aim of the present work is the preparation of Bioactive Glass (BG) 46S6 by different techniques. Fabrication of composite scaffolds by using of Poly Vinyl Alcohol (PVA) and quaternary BG (two methods melting and sol-gel) with different ratios to the prepared scaffolds was carried out. Different factor affecting the final properties of the prepared composite scaffolds were investigated in this study, such as; temperature of treatment, BG particle size, polymer/glass ratio, microstructure, porosity, biodegradation, bioactivity, and drug release. The thermal behavior of the prepared bioactive glass by sol-gel and melting techniques were identified using Differential Scanning Calorimetric/Thermo Gravimetric (DSC/TG) or Differential Thermal Analysis/Thermo Gravimetric (DTA /TG). The elemental composition of the prepared bioactive glasses was determined by X-rays Fluorescence (XRF) to confirm that the prepared bioactive glasses have the same elemental compositions and high purity for biomedical applications. The particle size of the prepared bioactive glass was determined by Transmission Electron Microscopic (TEM). Nano-bioactive glass could be obtained by modified sol-gel and the obtained particle size ranged between 40 to 61 nm. The prepared bioactive glass by both applied methods has the same amorphous phase and all identified groups as well as. The porous scaffold has 85% porosity with a slight decrease by increasing the glass contents. The degradation rate decreased by increasing of glass content in the prepared scaffolds. The bioactivity of the prepared composite scaffolds was evaluated by XRD, FTIR, SEM coupled with EDX and Inductively Coupled Plasma-Optical Emission Spectroscopic (ICP-OES). It has been observed that after soaking in Simulated Body Fluid (SBF), there was an apatite layer formed on the surface of the prepared samples with different thickness depending on the glass particle size and polymer/glass ratio
RAI, PRAGYA. „MECHANICAL STUDIES ON NANO BIOACTIVE GLASS EMBEDDED GELATIN-PECTIN NANOFIBERS“. Thesis, 2017. http://dspace.dtu.ac.in:8080/jspui/handle/repository/15930.
Der volle Inhalt der QuelleRodrigues, José Miguel Botica. „Production and characterization of magnetic bioactive glass membranes“. Master's thesis, 2019. http://hdl.handle.net/10362/80557.
Der volle Inhalt der QuelleMurty, Hara Prasad. „Development of Porous Bioactive SiO2-Na2O-CaO-P2O5 Glass Ceramic Scaffold“. Thesis, 2012. http://ethesis.nitrkl.ac.in/3628/1/Hara_Prasad_Murty.pdf.
Der volle Inhalt der QuelleBuchteile zum Thema "NANO BIOACTIVE GLASS"
Moawad, Hassan M. M., und Himanshu Jain. „Fabrication of Nano-Macro Porous Soda-Lime Phosphosilicate Bioactive Glass by the Melt-Quench Method“. In Progress in Nanotechnology, 17–31. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9780470588260.ch4.
Der volle Inhalt der QuelleMoawad, Hassan M. M., und Himanshu Jain. „Creation of Nano-Macro-lnterconnected Porosity in a Bioactive Glass-Ceramic by the Melt-Quench-Heat-Etch Method“. In Progress in Nanotechnology, 45–47. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9780470588260.ch7.
Der volle Inhalt der QuelleMassera, Jonathan. „Bioactive glass-ceramics: From macro to nano“. In Nanostructured Biomaterials for Regenerative Medicine, 275–92. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-08-102594-9.00010-3.
Der volle Inhalt der QuelleSaiz, E., S. Lopez-Esteban, S. Fujino, T. Oku, K. Suganuma und A. P. Tomsia. „CHARACTERIZATION OF METAL/GLASS INTERFACES IN BIOACTIVE GLASS COATINGS ON Ti-6Al-4V AND Co-Cr ALLOYS“. In Nano and Microstructural Design of Advanced Materials, 61–67. Elsevier, 2003. http://dx.doi.org/10.1016/b978-008044373-7/50034-6.
Der volle Inhalt der QuelleBin Zafar Auniq, Reedwan, Namon Hirun und Upsorn Boonyang. „Three-Dimensionally Ordered Macroporous-Mesoporous Bioactive Glass Ceramics for Drug Delivery Capacity and Evaluation of Drug Release“. In Ceramic Materials [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.95290.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "NANO BIOACTIVE GLASS"
Batra, Uma, Seema Kapoor, J. D. Sharma, S. K. Tripathi, Keya Dharamvir, Ranjan Kumar und G. S. S. Saini. „Nano-Hydroxyapatite∕Fluoridated and Unfluoridated Bioactive Glass Composites: Structural Analysis and Bioactivity Evaluation“. In INTERNATIONAL CONFERENCE ON ADVANCES IN CONDENSED AND NANO MATERIALS (ICACNM-2011). AIP, 2011. http://dx.doi.org/10.1063/1.3653714.
Der volle Inhalt der QuelleDixit, K., und N. Sinha. „Additively Manufactured Nanofiber Reinforced Bioactive Glass Based Functionally Graded Scaffolds for Bone Tissue Engineering“. In 2019 IEEE 13th International Conference on Nano/Molecular Medicine & Engineering (NANOMED). IEEE, 2019. http://dx.doi.org/10.1109/nanomed49242.2019.9130605.
Der volle Inhalt der QuelleAniket und Ahmed R. El-Ghannam. „Zeta Potential of Silica Calcium Phosphate Nanocomposite: Effect of Material Composition and Medium pH“. In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192883.
Der volle Inhalt der QuelleLiu, Xueran, und Ahmed R. El-Ghannam. „Effect of Processing Parameters on the Microstructure and Mechanical Behaviour of Nano Bioceramic“. In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-193076.
Der volle Inhalt der QuelleWetaify, Ahmed Rajih Hassan, Firas Fouad Abdullah und Safaa Hashim Radhi. „Enhancement of bioactive glass ceramic using magnesium nano rod addition: (B. A. G. C / Mg NRs nanocomposite materials for bone repairing)“. In 2ND INTERNATIONAL CONFERENCE ON MATERIALS ENGINEERING & SCIENCE (IConMEAS 2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0000460.
Der volle Inhalt der QuelleDucheyne, Paul, Hongxia Gao, Ahmed El-Ghannam, Irving Shapiro und Portonovo Ayyaswamy. „The Use of Bioactive Glass Particles As Microcarriers“. In ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-1192.
Der volle Inhalt der QuelleRojas, O., M. Prudent, M. E. López, F. Vargas und H. Ageorges. „Study of Atmospheric Plasma Parameters for Denser Bioactive Glass Coatings“. In ITSC2019, herausgegeben von F. Azarmi, K. Balani, H. Koivuluoto, Y. Lau, H. Li, K. Shinoda, F. Toma, J. Veilleux und C. Widener. ASM International, 2019. http://dx.doi.org/10.31399/asm.cp.itsc2019p0872.
Der volle Inhalt der QuelleYatongchai, Chokchai, Mark R. Towler und Anthony W. Wren. „An Investigation into the Structure and Properties of CaO-ZnO-SiO2-TiO2-Na2O Bioactive Glass/Hydroxyapatite Composite“. In 2013 39th Annual Northeast Bioengineering Conference (NEBEC). IEEE, 2013. http://dx.doi.org/10.1109/nebec.2013.51.
Der volle Inhalt der Quelle