Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Nanomaterials recyclability“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Nanomaterials recyclability" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Nanomaterials recyclability"
Liu, Yangkaixi, Jing Tian, Longquan Xu, Yi Wang, Xu Fei und Yao Li. „Multilayer graphite nano-sheet composite hydrogel for solar desalination systems with floatability and recyclability“. New Journal of Chemistry 44, Nr. 46 (2020): 20181–91. http://dx.doi.org/10.1039/d0nj04409a.
Der volle Inhalt der QuelleJančíková, Veronika, und Michal Jablonský. „The role of deep eutectic solvents in the production of cellulose nanomaterials from biomass“. Acta Chimica Slovaca 15, Nr. 1 (01.01.2022): 61–71. http://dx.doi.org/10.2478/acs-2022-0008.
Der volle Inhalt der QuelleCho, Yukio, Cole D. Fincher, Yet-Ming Chiang und Julia Ortony. „A Recyclable Solid Electrolyte for Li-Ion Batteries Composed of Supramolecular Nanostructures“. ECS Meeting Abstracts MA2023-01, Nr. 55 (28.08.2023): 2665. http://dx.doi.org/10.1149/ma2023-01552665mtgabs.
Der volle Inhalt der QuelleZhao, Jing, Victoria E. Lee, Rui Liu und Rodney D. Priestley. „Responsive Polymers as Smart Nanomaterials Enable Diverse Applications“. Annual Review of Chemical and Biomolecular Engineering 10, Nr. 1 (07.06.2019): 361–82. http://dx.doi.org/10.1146/annurev-chembioeng-060718-030155.
Der volle Inhalt der QuelleAlguacil, Francisco Jose. „Nanomaterials for CO2 Capture from Gas Streams“. Separations 11, Nr. 1 (19.12.2023): 1. http://dx.doi.org/10.3390/separations11010001.
Der volle Inhalt der QuelleGhazzy, Asma, Lina Yousef und Afnan Al-Hunaiti. „Visible Light Induced Nano-Photocatalysis Trimetallic Cu0.5Zn0.5-Fe: Synthesis, Characterization and Application as Alcohols Oxidation Catalyst“. Catalysts 12, Nr. 6 (02.06.2022): 611. http://dx.doi.org/10.3390/catal12060611.
Der volle Inhalt der QuelleFontánez, Kenneth, Diego García, Dayna Ortiz, Paola Sampayo, Luis Hernández, María Cotto, José Ducongé et al. „Biomimetic Catalysts Based on Au@TiO2-MoS2-CeO2 Composites for the Production of Hydrogen by Water Splitting“. International Journal of Molecular Sciences 24, Nr. 1 (26.12.2022): 363. http://dx.doi.org/10.3390/ijms24010363.
Der volle Inhalt der QuelleMiao, Hui, Kelong Ma, Shiwei Hu, Ruiqian Li, Lin Sun und Yumin Cui. „Aerobic Oxidative Coupling of Aniline Catalyzed by One-Dimensional Manganese Hydroxide Nanomaterials“. Synlett 30, Nr. 05 (18.02.2019): 552–56. http://dx.doi.org/10.1055/s-0037-1612108.
Der volle Inhalt der QuelleFu, Hao, Weiwei Liu, Junqing Li, Wenguang Wu, Qian Zhao, Haoming Bao, Le Zhou et al. „High-Density-Nanotips-Composed 3D Hierarchical Au/CuS Hybrids for Sensitive, Signal-Reproducible, and Substrate-Recyclable SERS Detection“. Nanomaterials 12, Nr. 14 (10.07.2022): 2359. http://dx.doi.org/10.3390/nano12142359.
Der volle Inhalt der QuelleLowe, Brandon, Jabbar Gardy und Ali Hassanpour. „The Role of Sulfated Materials for Biodiesel Production from Cheap Raw Materials“. Catalysts 12, Nr. 2 (16.02.2022): 223. http://dx.doi.org/10.3390/catal12020223.
Der volle Inhalt der QuelleDissertationen zum Thema "Nanomaterials recyclability"
Fusteș-Dămoc, Iolanda. „Matériaux polymères durables synthétisés à base d'oligo- et de polysaccharides“. Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4076.
Der volle Inhalt der QuelleThe durability of materials is their ability to withstand over time the influence of various factors such as temperature, humidity and breakage while maintaining their characteristics.Durable polymer materials are the solution to environmental pollution. In this context, the development of sustainable polymer materials based on biodegradable compounds, which are abundant in nature, even from industrial waste, and which also have a low cost price, is a possible alternative to materials based on fossil compounds, which are toxic. At the same time, the use of minimal chemicals is an advantage for large-scale production by industries. In addition, obtaining advantageous properties under these conditions, tailored to certain types of applications, brings added value, which recommends their use over toxic materials.Oligo- and polysaccharides represent a suitable raw material that could be exploited in the design of durable polymeric materials. Their use has already aroused real interest among researchers, but their industrial application faces a number of difficulties: from inadequate technological processes and high consumption of solvents and chemicals to the high costs of obtaining, recycling and reusing materials, in line with a circular economy, which is essential in addressing environmental protection. This circular economy is about extending the life cycle of materials by reducing waste. by promoting the repair, reuse and recycling of materials for as long as possible. This PhD thesis presents the results obtained from the synthesis, characterisation and testing of sustainable oligo- and polysaccharide-based materials.The overall objective of the PhD thesis is to develop durable materials that incorporate and exploit non-toxic, renewable, environmentally friendly, cheap and naturally abundant compounds such as oligo- and polysaccharides in a circular economy.The main research directions developed in the thesis are:- Valorisation of β-cyclodextrin, from the oligosaccharide category, and chitosan, from the polysaccharide category, in sustainable material systems;- Development of such sustainable materials using a minimum number of steps and a reduced number of compounds and solvents;- The use, in particular, of chitosan in solid (powder) form to optimise the mechanical and thermal properties of the systems;- Achieving improved mechanical and thermal properties of the materials by introducing oligo- and polysaccharides, compared to reference systems, for chitosan-based systems, and for β-cyclodextrin-based systems: optimised adsorption of various pollutants such as antibiotics, organic dyes, heavy metals;- increased application potential of materials in various fields such as biomedical, food packaging, epoxy coatings, aerospace, due to the advantages of oligo- and polysaccharides;- Testing the recyclability of β-cyclodextrin-based nanomaterials to improve material durability
Buchteile zum Thema "Nanomaterials recyclability"
Ray, Suprakas Sinha, Rashi Gusain und Neeraj Kumar. „Regeneration and recyclability of carbon nanomaterials after adsorption“. In Carbon Nanomaterial-Based Adsorbents for Water Purification, 349–63. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-821959-1.00015-5.
Der volle Inhalt der QuelleAndala, Dickson Mubera, Erick Mobegi, Mildred Nawiri und Geoffrey Otieno. „Fabrication of Metal Oxide-Biopolymer Nanocomposite for Water Defluoridation“. In Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials, 1264–94. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-8591-7.ch053.
Der volle Inhalt der Quelle