Zeitschriftenartikel zum Thema „Naturally occurring radioactive materials“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Naturally occurring radioactive materials.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Naturally occurring radioactive materials" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Vearrier, David, John A. Curtis und Michael I. Greenberg. „Technologically enhanced naturally occurring radioactive materials“. Clinical Toxicology 47, Nr. 5 (Juni 2009): 393–406. http://dx.doi.org/10.1080/15563650902997849.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Desideri, D., L. Feduzi, M. A. Meli und C. Roselli. „Leachability of naturally occurring radioactive materials“. Journal of Radioanalytical and Nuclear Chemistry 267, Nr. 3 (März 2006): 551–55. http://dx.doi.org/10.1007/s10967-006-0085-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Fawcett, H. H. „Naturally occurring radioactive materials—principles and practices“. Journal of Hazardous Materials 53, Nr. 1-3 (Mai 1997): 230–32. http://dx.doi.org/10.1016/s0304-3894(96)01849-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Jeffries, C., R. Akber, A. Johnston und B. Cassels. „Regulation of naturally occurring radioactive materials in Australia“. Radiation Protection Dosimetry 146, Nr. 1-3 (22.04.2011): 174–77. http://dx.doi.org/10.1093/rpd/ncr141.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Paschoa, Anselmo S. „Naturally occurring radioactive materials (NORM) and petroleum origin“. Applied Radiation and Isotopes 48, Nr. 10-12 (Oktober 1997): 1391–96. http://dx.doi.org/10.1016/s0969-8043(97)00134-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Chau, Nguyen Dinh, und Edward Chruściel. „Leaching of technologically enhanced naturally occurring radioactive materials“. Applied Radiation and Isotopes 65, Nr. 8 (August 2007): 968–74. http://dx.doi.org/10.1016/j.apradiso.2007.03.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Campos, M. P., und B. R. S. Pecequilo. „Thoron exposure for workers with naturally occurring radioactive materials“. International Journal of Low Radiation 4, Nr. 1 (2007): 53. http://dx.doi.org/10.1504/ijlr.2007.014489.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kouzes, R., J. Ely, J. Evans, W. Hensley, E. Lepel, J. McDonald, J. Schweppe, E. Siciliano, D. Strom und M. Woodring. „Naturally occurring radioactive materials in cargo at US borders“. Packaging, Transport, Storage & Security of Radioactive Material 17, Nr. 1 (März 2006): 11–17. http://dx.doi.org/10.1179/174651006x95556.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Burr, Tom, und Kary Myers. „Signatures for several types of naturally occurring radioactive materials“. Applied Radiation and Isotopes 66, Nr. 9 (September 2008): 1250–61. http://dx.doi.org/10.1016/j.apradiso.2008.02.080.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Eng, Jeanette. „Naturally Occurring Radioactive Materials (NORM) and Technologically Enhanced NORM (TENORM)“. Health Physics 101, Nr. 1 (Juli 2011): 94. http://dx.doi.org/10.1097/hp.0b013e3182027409.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Majid, Amran AB, Aznan Fazli Ismail, Muhamad Samudi Yasir, Redzuwan Yahaya und Ismail Bahari. „Radiological dose assessment of naturally occurring radioactive materials in concrete building materials“. Journal of Radioanalytical and Nuclear Chemistry 297, Nr. 2 (12.01.2013): 277–84. http://dx.doi.org/10.1007/s10967-012-2387-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Nelson, Andrew W., Adam J. Johns, Eric S. Eitrheim, Andrew W. Knight, Madeline Basile, E. Arthur Bettis III, Michael K. Schultz und Tori Z. Forbes. „Partitioning of naturally-occurring radionuclides (NORM) in Marcellus Shale produced fluids influenced by chemical matrix“. Environmental Science: Processes & Impacts 18, Nr. 4 (2016): 456–63. http://dx.doi.org/10.1039/c5em00540j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Ali, Mohsen M. M., Hongtao Zhao, Zhongyu Li und Najeeb N. M. Maglas. „Concentrations of TENORMs in the petroleum industry and their environmental and health effects“. RSC Advances 9, Nr. 67 (2019): 39201–29. http://dx.doi.org/10.1039/c9ra06086c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Hassan, Halmat Jalal, Suhairul Hashim, Noor Zati Hani Abu Hanifah, Sib Krishna Ghoshal, Mohamad Syazwan Mohd Sanusi, Fariza Hanim Binti Suhailin, Muhammad Fahmi Rizal Abdul Hadi, Rozman Mohd Tahar und David Andrew Bradley. „Naturally Occurring Radioactive Materials in Bracelets and Necklaces: Radiological Risk Evaluation“. International Journal of Environmental Research and Public Health 18, Nr. 21 (24.10.2021): 11170. http://dx.doi.org/10.3390/ijerph182111170.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
A particular category of jewelry is one involving bracelets and necklaces that are deliberately made to contain naturally occurring radioactive material (NORM)—purveyors making unsubstantiated claims for health benefits from the release of negative ions. Conversely, within the bounds of the linear no-threshold model, long-term use presents a radiological risk to wearers. Evaluation is conducted herein of the radiological risk arising from wearing these products and gamma-ray spectrometry is used to determine the radioactivity levels and annual effective dose of 15 commercially available bracelets (samples B1 to B15) and five necklaces (samples N16 to N20). Various use scenarios are considered; a Geant4 Monte Carlo (Geant4 MC) simulation is also performed to validate the experimental results. The dose conversion coefficient for external radiation and skin equivalent doses were also evaluated. Among the necklaces, sample N16 showed the greatest levels of radioactivity, at 246 ± 35, 1682 ± 118, and 221 ± 40 Bq, for 238U, 232Th, and 40K, respectively. For the bracelets, for 238U and 232Th, sample B15 displayed the greatest level of radioactivity, at 146 ± 21 and 980 ± 71 Bq, respectively. N16 offered the greatest percentage concentrations of U and Th, with means of 0.073 ± 0.0002% and 1.51 ± 0.0015%, respectively, giving rise to an estimated annual effective dose exposure of 1.22 mSv, substantially in excess of the ICRP recommended limit of 1 mSv/year.
15

FUJIKAWA, Yoko, Michikuni SHIMO, Hidenori YONEHARA, Itsumasa URABE, Tadashi TUJIMOTO, Keiji ODA und Shinichiro MIYAZAKI. „On the Optimal Regulation of Technologically-Enhanced Naturally Occurring Radioactive Materials“. Japanese Journal of Health Physics 41, Nr. 2 (2006): 99–108. http://dx.doi.org/10.5453/jhps.41.99.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Sesay, Isata Esther, Monday Paul und Janet Ayobami Ademola. „EXHALATION OF RADON FROM NATURALLY OCCURRING RADIOACTIVE MATERIALS (NORM) IN NIGERIA“. Radiation Protection Dosimetry 187, Nr. 4 (31.10.2019): 461–65. http://dx.doi.org/10.1093/rpd/ncz187.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract Radon-222 mass exhalation rate, EM, and surface exhalation rate, EA, have been determined for some building materials and fertilizers in Nigeria by accumulation method using AlphaGUARD radon monitor. The building materials include granite, cement, tile, white marble, brick, concrete and sand. The mean EM of the building materials varied from 0.06 ± 0.03 for white marble to 0.23 ± 0.15 Bq kg−1 h−1 for brick. The mean EA ranged between 1.06 ± 0.56 Bq kg−1 h−1 and 3.15 ± 1.52 Bq m−2 h−1 for white marble and brick, respectively. Most of the EM and EA of the building materials were higher than those of other countries. For the fertilizers, the EM and EA ranged from 0.13 ± 0.01 to 0.42 ± 0.03 Bq kg−1 h−1 and 2.11 ± 0.56 to 4.81 ± 1.24 Bq m−2 h−1 with mean values of 0.25 ± 0.07 Bq kg−1 h−1 and 3.24 ± 0.93 Bq m−2 h−1, respectively. The radon mass and surface exhalation rates of the fertilizers were higher than those of the building materials.
17

Paschoa, Anselmo S. „Potential environmental and regulatory implications of naturally occurring radioactive materials (NORM)“. Applied Radiation and Isotopes 49, Nr. 3 (März 1998): 189–96. http://dx.doi.org/10.1016/s0969-8043(97)00239-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Ann Glass Geltman, Elizabeth, und Nichole LeClair. „Variance in State Protection from Exposure to NORM and TENORM Wastes Generated During Unconventional Oil and Gas Operations: Where We Are and Where We Need to Go“. NEW SOLUTIONS: A Journal of Environmental and Occupational Health Policy 28, Nr. 2 (06.02.2018): 240–61. http://dx.doi.org/10.1177/1048291118755387.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Radioactive materials for the medical, technological, and industrial sectors have been effectively regulated in the United States since as early as 1962. The steady increase in the exploration and production of shale gas in recent years has led to concerns about exposures to Naturally Occurring Radioactive Materials (NORM) and Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) in oil and gas waste streams. This study applied policy surveillance methods to conduct a cross-sectional fifty-state survey of law and regulations of NORM and TENORM waste from oil and gas operations. Results indicated that seventeen states drafted express regulations to reduce exposure to oil and gas NORM and TENORM waste. States with active oil and gas drilling that lack regulations controlling exposure to NORM and TENORM may leave the public and workers susceptible to adverse health effects from radiation. The study concludes with recommendations in regard to regulating oil and gas NORM and TENORM waste.
19

Zaidan, Jamal Abdul Rahman. „Natural Occurring Radioactive Materials (NORM) in the oil and gas industry“. Journal of Petroleum Research and Studies 1, Nr. 1 (05.05.2021): 4–21. http://dx.doi.org/10.52716/jprs.v1i1.22.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Radioactive materials which occur naturally and expose people to radiation occur widely, and are known by the acronym 'NORM'. Exposure to NORM is often increased by human activities, eg burning coal, making and using fertilisers, oil and gas production. Many natural materials contain radioactive elements (radionuclides). The earth's crust is radioactive and constantly leaks radon gas into our atmosphere. However, while the level of individual exposure from all this is usually trivial, some issues arise regarding regulation, and also perspective in relation to what is classified as radioactive waste.The radionuclides identified in oil and gas streams belong to the decay chains of the naturally occurring primordial radionuclides 238U and 232Th. Analyses of NORM from many different oil and gas fields show that the solids found in the downhole and surface structures of oil and gas production facilities do not include 238U and 232Th. gas These elements are not mobilized from the reservoir rock that contains the oil, gas and formation water. Formation water contains the radium isotopes 226Ra from the 238U series, and 228Ra and 224Ra from the 232Th series. All three radium isotopes, but not their parents, thus appear in the water co-produced with the oil or gas. The 228Th radionuclide sometimes detected in aged sludge. This causes their precipitation as sulphate and carbonate scales. The mixed stream of oil, and water also carries the noble gas 222Rn that is generated in the reservoir rock through decay of 226Ra. It would appear that the concentrations of 226Ra, 228Ra and 224Ra in scales and sludge range from less than 0.1 Bq/g up to 15 000 Bq/g. Generally, the activity concentrations of radium isotopes are lower in sludge than in scales, the opposite applies to 210Pb. The deposition of contaminated scales and sludge in pipes and vessels may produce significant dose rates inside and outside these components. Maximum dose rates are usually in the range of up to a few microsieverts per hour. In exceptional cases, dose rates measured directly on the outside surfaces of production equipment have reached several hundred microsieverts per hour, which is about 1000 times greater than normal background values due to cosmic radiation and terrestrial radiation.
20

Adebiyi, Festus M., Odunayo T. Ore, Adedapo O. Adeola, Solomon S. Durodola, Oluwasemola F. Akeremale, Kayode O. Olubodun und Olaniran K. Akeremale. „Occurrence and remediation of naturally occurring radioactive materials in Nigeria: a review“. Environmental Chemistry Letters 19, Nr. 4 (13.04.2021): 3243–62. http://dx.doi.org/10.1007/s10311-021-01237-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Harlow, K. „Naturally occurring radioactive materials and the regulatory challenges to the zircon industry“. Journal of the Southern African Institute of Mining and Metallurgy 117, Nr. 5 (2017): 409–13. http://dx.doi.org/10.17159/2411-9717/2017/v117n5a1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Omar, Omar, Mohamed Abdel-Rahman und Sayed El-mongy. „Analysis of naturally occurring radioactive materials in environmental samples using gamma spectrometry“. International Conference on Chemical and Environmental Engineering 9, Nr. 6 (01.04.2018): 356–70. http://dx.doi.org/10.21608/iccee.2018.34678.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Caffrey, Emily A., Arthur S. Rood, Helen A. Grogan, John E. Till und Kurt Herman. „Dose Assessment for Technologically Enhanced Naturally Occurring Radioactive Materials Disposal in Landfills“. Health Physics 121, Nr. 3 (06.07.2021): 209–24. http://dx.doi.org/10.1097/hp.0000000000001439.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Hassan, Zainab Mohammed. „Naturally occurring radioactive materials and related hazard indices in Ahdeb oil field“. Iraqi Journal of Physics (IJP) 13, Nr. 27 (04.02.2019): 164–73. http://dx.doi.org/10.30723/ijp.v13i27.275.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In this work, measurements of activity concentration of naturally occurring radioactive materials (NORM) isotopes and their related hazard indices for several materials such as crude oil, sludge and water in Ahdeb oil fields in Waste governorate using high pure germanium coaxial detection technique. The average values for crude oil samples were174.72Bq/l, 43.46Bq/l, 355.07Bq/l, 264.21Bq/l, 122.52nGy/h, 0.7138, 1.1861, 0.601 mSv/y, 0.1503mSv/y and 1.8361 for Ra-226, Ac-228, K-40, Ra eq, D, H-external and H-internal respectively. According to the results; the ratio between 238U to 232Th was 4, which represents the natural ratio in the crust earth; therefore, one can be strongly suggested that the geo-stricture of the Ahdeb oil fields dose not contents any kind of rocks. Although the results indicate the rising in the activity concentration of NORM isotopes, the national and international comparisons proved that it is still in the world range limits.
25

Aslam, M., R. Gul, T. Ara und M. Hussain. „Assessment of radiological hazards of naturally occurring radioactive materials in cement industry“. Radiation Protection Dosimetry 151, Nr. 3 (20.02.2012): 483–88. http://dx.doi.org/10.1093/rpd/ncs018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Lim, HaYan, Won Chul Choi und Kwang Pyo Kim. „Characterization of Particulates Containing Naturally Occurring Radioactive Materials in Phosphate Processing Facility“. Journal of Radiation Protection 39, Nr. 1 (30.03.2014): 7–13. http://dx.doi.org/10.14407/jrp.2014.39.1.007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Gunawan, Onek, Eko Pudjadi, Musaddiq Musbach und Wahyudi. „Technologically Enchanced Naturally Occurring Radioactive Materials (TENORM) Analysis of Bangka Tin Slag“. Journal of Physics: Conference Series 1198, Nr. 2 (April 2019): 022006. http://dx.doi.org/10.1088/1742-6596/1198/2/022006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Miller, Maurice O., und Mitko Voutchkov. „Risk analysis from naturally occurring radioactive materials in the Jamaican terrestrial environment“. Air Quality, Atmosphere & Health 9, Nr. 5 (12.07.2015): 551–60. http://dx.doi.org/10.1007/s11869-015-0360-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

McLaughlin, Molly C., Bonnie McDevitt, Hannah Miller, Kaela K. Amundson, Michael J. Wilkins, Nathaniel R. Warner, Jens Blotevogel und Thomas Borch. „Constructed wetlands for polishing oil and gas produced water releases“. Environmental Science: Processes & Impacts 23, Nr. 12 (2021): 1961–76. http://dx.doi.org/10.1039/d1em00311a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Produced water (PW) is the largest waste stream associated with oil and gas (O&G) operations and contains petroleum hydrocarbons, heavy metals, salts, naturally occurring radioactive materials and any remaining chemical additives.
30

Zivanovic, Milos, Jelena Nikolic, Andrei Apostol und Marios Anagnostakis. „Analysis of interferences from full energy peaks in gamma spectrometry of NORM and TENORM samples“. Nuclear Technology and Radiation Protection 27, Nr. 4 (2012): 380–87. http://dx.doi.org/10.2298/ntrp1204380z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
A considerable number of primordial radioisotopes are present in almost all the samples extracted from the Earth?s crust, such as oil, rock, soil or other materials. Their concentrations are often determined by gamma spectrometry. Although the relative concentrations of isotopes often fluctuate within a narrow range, it is not always the case. Some natural materials (such as naturally occurring radioactive material) show unusual activity ratio between 238U and 232Th, while technologically processed materials (technologically enhanced naturally occurring radioactive material) might also introduce significant disequilibrium in radioactive chains. Knowing that primordial radioisotopes emit in total more than a thousand gamma and characteristic X-ray photons and that many of them interfere with each other, a question arises whether for some activity ratios commonly used photopeaks become useless for quantitative analysis, due to interferences with other photopeaks. A computer program was developed in order to calculate full energy photon interferences for any chosen photopeak. The calculations are based on the inputs in the form of isotope activities and detector calibration equations and its characteristics are presented in this paper.
31

Ferreira, Adriano Mota, Henrique Takuji Fukuma, Rafael Brito de Moura, Alexandre Silveira, Rafael Oliveira Tiezzi und Raul Alberto Sodré Villegas. „Naturally-Occurring Radioactive Materials at water treatment plant on the Poços de Caldas Plateau Region, Brazil“. Engenharia Sanitaria e Ambiental 27, Nr. 1 (Februar 2022): 103–11. http://dx.doi.org/10.1590/s1413-415220200044.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
ABSTRACT Oil and gas, mining, among others, are examples of facilities where naturally occurring radioactive materials can be found. This study aims to evaluate the presence of natural radioactive series, especially those of 238U and 232Th, in the water treatment plants of Poços de Caldas City, Minas Gerais. The presence of these series was investigated in samples of raw water, treated water, sludge from decanters, and scale from Parshall gutters. The sludge, input, and scale samples were submitted to the gamma spectrometry technique to determine the 226Ra, 228Ra, and 210Pb radionuclides. For U and Th, ultraviolet visible spectrophotometry was performed, and for the alpha and beta total values, radiochemical separation and subsequent alpha and beta total counts were performed. The results indicate that water samples are within the Ministry of Health Ordinance n° 5 (2017). Due to the different concentrations of radionuclide activity in the sludge, it was not possible to affirm the same order of magnitude with the sediment from the catchments. However, the values are in accordance with those established by the European Union Council for Naturally-Occurring Radioactive Materials. In the scale, the contents of 1192, 1704, and 301 Bq kg−1 were identified for 226Ra, 228Ra, and 210Pb, respectively. In the inputs of aluminum sulfate and calcium hydroxide, no relevant activities were identified. The results obtained in the study can serve as an indicative regarding the need for a more detailed evaluation of the radiological issue in question concerning public water supplies.
32

Syaeful, H., I. G. Sukadana und A. Sumaryanto. „Radiometric Mapping for Naturally Occurring Radioactive Materials (NORM) Assessment in Mamuju, West Sulawesi“. Atom Indonesia 40, Nr. 1 (13.05.2014): 35. http://dx.doi.org/10.17146/aij.2014.263.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Michalik, Bogusław. „Is it necessary to raise awareness about technologically enhanced naturally occurring radioactive materials?“ Journal of Environmental Monitoring 11, Nr. 10 (2009): 1825. http://dx.doi.org/10.1039/b904911h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Elghawi, Usama M., Feisal A. Abutweirat und Taha S. Barka. „Evaluation of naturally occurring radioactive materials in oilfields of south east of Libya“. International Journal of Low Radiation 10, Nr. 4 (2017): 304. http://dx.doi.org/10.1504/ijlr.2017.087690.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Barka, Taha S., Feisal A. Abutweirat und Usama M. Elghawi. „Evaluation of naturally occurring radioactive materials in oilfields of south east of Libya“. International Journal of Low Radiation 10, Nr. 4 (2017): 304. http://dx.doi.org/10.1504/ijlr.2017.10008589.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Naskar, Nabanita, Susanta Lahiri, Punarbasu Chaudhuri und Alok Srivastava. „Measurement of naturally occurring radioactive materials, 238U and 232Th: anomalies in photopeak selection“. Journal of Radioanalytical and Nuclear Chemistry 310, Nr. 3 (17.08.2016): 1381–96. http://dx.doi.org/10.1007/s10967-016-4988-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Michalik, Bogusław. „Is it necessary to raise awareness about naturally occurring radioactive materials in mining?“ Journal of Sustainable Mining 18, Nr. 4 (November 2019): 269. http://dx.doi.org/10.1016/j.jsm.2019.09.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Goronovski, Andrei, P. James Joyce, Anna Björklund, Göran Finnveden und Alan H. Tkaczyk. „Impact assessment of enhanced exposure from Naturally Occurring Radioactive Materials (NORM) within LCA“. Journal of Cleaner Production 172 (Januar 2018): 2824–39. http://dx.doi.org/10.1016/j.jclepro.2017.11.131.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Moatar, F., S. R. Shadizadeh, A. R. Karbassi, E. Ardalani, R. Akbari Derakhshi und M. Asadi. „Determination of naturally occurring radioactive materials (NORM) in formation water during oil exploration“. Journal of Radioanalytical and Nuclear Chemistry 283, Nr. 1 (04.09.2009): 3–7. http://dx.doi.org/10.1007/s10967-009-0001-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Hasani, F., F. Shala, G. Xhixha, M. K. Xhixha, G. Hodolli, S. Kadiri, E. Bylyku und F. Cfarku. „Naturally occurring radioactive materials (NORMs) generated from lignite-fired power plants in Kosovo“. Journal of Environmental Radioactivity 138 (Dezember 2014): 156–61. http://dx.doi.org/10.1016/j.jenvrad.2014.08.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

de Witt, Ruan, John Lambert und Hamilton's David. „Bioremediation and immobilisation of oily sands containing naturally occurring radioactive material (NORM)“. APPEA Journal 52, Nr. 1 (2012): 311. http://dx.doi.org/10.1071/aj11023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The precipitation of radioactive substances from produced formation water during the production of oil and gas causes the accumulation of naturally occurring radioactive materials (NORM) in processing equipment. The resulting oily sandy waste stream has a level of radioactivity and contains volatile organic compounds, heavy metals and other petroleum hydrocarbon based contamination. This poses a potential health, safety and environmental risk. Treatment mechanisms for such waste must therefore address both radioactive and hydrocarbon contamination. This paper focuses primarily on the hydrocarbon contamination, and considers bioremediation and immobilisation as treatment mechanisms. Bioremediation of the oily fraction of this waste is examined using four different types of bacteria: Aspergillus niger, Acinetobacter calcosleticus, Pseudomonas aerogenousa and Rhodococcus ruber as possible additives. The use of naturally acclimated organisms generated in bioremediation of oily industrial residues is also examined. Immobilisation treatment with the purpose of capturing the oily fraction of the waste was also evaluated by limiting bioavailability though micro- and macro-encapsulation of the organic components of the waste. Leachability subsequent to immobilisation was assessed to determine the suitability of the treatment for long-term encapsulation and containment. The results in this paper demonstrated how treatment by immobilisation (also referred to as solidification or stabilisation) proved to be the most successful approach with leachate results validating effective binding of the hydrocarbon component.
42

Vaitiekūnas, Petras, und Daiva Lukošiūte. „STUDY OF GAMMA RADIATION FROM BUILDING MATERIALS“. JOURNAL OF ENVIRONMENTAL ENGINEERING AND LANDSCAPE MANAGEMENT 13, Nr. 4 (31.12.2005): 182–86. http://dx.doi.org/10.3846/16486897.2005.9636869.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
People are constantly exposed to ionizing radiation, but generally the amount, type and duration of exposure to radionuclides (radiation emitters) affects the severity or type of health effect. Nearly all rocks, minerals and soil may contain small amounts of naturally occuring radioactive materials, and when they are incorporated into building materials, these naturally occurring radioactive materials are included as well. Ionization is a process in which a charge portion of a molecule is given enough energy to break away atoms. There are three main kinds of ionizing radiation: alpha particles, beta particles, gamma rays and x‐rays, with gamma and x‐rays having a higher amount of energy. Since gamma rays have a higher amount of energy, they have potential to cause a greater damage on the outside or inside of a human body. A model based on data gathered from different types of structures will try to show that the amount of ionizing radiation, especially gamma rays, that affect residents in various parts of buildings, is directly related to the properties of radionuclides present in building structures.
43

Hamida, Ezeddine. „Comparison Between, NORM (Naturally Occurring Radioactive Materials) of, Agricultural Soil Sample (tomato field treated with phosphate fertilizer) Relatively Close to an Oil Field, and Wastes Samples (scale and sludge) of the Same Oil Field“. African Journal of Environment and Natural Science Research 5, Nr. 1 (10.04.2022): 25–33. http://dx.doi.org/10.52589/ajensr-aruajvew.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This paper is an overview comparison of NORM (Naturally Occurring Radioactive Materials). Soil sample was collected from a tomato field which was treated by phosphate fertilizers, and scale and sludge samples were collected from an oil field. The two fields are relatively close (less than 60 km).
44

Fathabadi, N., M. V. Farahani, S. Amani, M. Moradi und B. Haddadi. „Evaluation of occupational exposure to naturally occurring radioactive materials in the Iranian ceramics industry“. Radiation Protection Dosimetry 145, Nr. 4 (09.12.2010): 400–404. http://dx.doi.org/10.1093/rpd/ncq441.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

AL Nabhani, Khalid, Faisal Khan und Ming Yang. „Technologically Enhanced Naturally Occurring Radioactive Materials in oil and gas production: A silent killer“. Process Safety and Environmental Protection 99 (Januar 2016): 237–47. http://dx.doi.org/10.1016/j.psep.2015.09.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Joyce, P. James, Andrei Goronovski, Alan H. Tkaczyk und Anna Björklund. „A framework for including enhanced exposure to naturally occurring radioactive materials (NORM) in LCA“. International Journal of Life Cycle Assessment 22, Nr. 7 (22.11.2016): 1078–95. http://dx.doi.org/10.1007/s11367-016-1218-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Alharbi, Sami H., und Riaz A. Akber. „Broad-energy germanium detector for routine and rapid analysis of naturally occurring radioactive materials“. Journal of Radioanalytical and Nuclear Chemistry 311, Nr. 1 (08.08.2016): 59–75. http://dx.doi.org/10.1007/s10967-016-4974-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Lauer, Nancy E., James C. Hower, Heileen Hsu-Kim, Ross K. Taggart und Avner Vengosh. „Naturally Occurring Radioactive Materials in Coals and Coal Combustion Residuals in the United States“. Environmental Science & Technology 49, Nr. 18 (02.09.2015): 11227–33. http://dx.doi.org/10.1021/acs.est.5b01978.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Chowdhury, Shakhawat, Tahir Husain, Brian Veitch, Neil Bose und Rehan Sadiq. „Human Health Risk Assessment of Naturally Occurring Radioactive Materials in Produced Water—A Case Study“. Human and Ecological Risk Assessment: An International Journal 10, Nr. 6 (Dezember 2004): 1155–71. http://dx.doi.org/10.1080/10807030490887203.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

García Tenorio, Rafael, Guillermo Manjón, Yann René Ramos Arroyo, Guadalupe De La Rosa, Gustavo Cruz Jiménez, René Loredo Portales, Cruz Daniel Mandujano García, Modesto Sosa und Juan Mantero. „Naturally occurring radioactive materials in metallic mine wastes from northeaster Guanajuato Mexico: a scoping study“. International Journal of Environment and Waste Management 24, Nr. 2 (2019): 210. http://dx.doi.org/10.1504/ijewm.2019.10022375.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie