Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Neurochemical networks“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Neurochemical networks" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Neurochemical networks"
Amirah, Farah. „The neurochemical underpinnings of autism spectrum disorder“. International Journal of Clinical Medical Research 3, Nr. 1 (22.01.2025): 16–17. https://doi.org/10.61466/ijcmr3010004.
Der volle Inhalt der QuelleKhani, Abbas, und Gregor Rainer. „Neural and neurochemical basis of reinforcement-guided decision making“. Journal of Neurophysiology 116, Nr. 2 (01.08.2016): 724–41. http://dx.doi.org/10.1152/jn.01113.2015.
Der volle Inhalt der QuelleMarotta, Rosa, Maria C. Risoleo, Giovanni Messina, Lucia Parisi, Marco Carotenuto, Luigi Vetri und Michele Roccella. „The Neurochemistry of Autism“. Brain Sciences 10, Nr. 3 (13.03.2020): 163. http://dx.doi.org/10.3390/brainsci10030163.
Der volle Inhalt der QuelleJiménez-Jiménez, Félix, Hortensia Alonso-Navarro, Elena García-Martín und José Agúndez. „Neurochemical Features of Rem Sleep Behaviour Disorder“. Journal of Personalized Medicine 11, Nr. 9 (31.08.2021): 880. http://dx.doi.org/10.3390/jpm11090880.
Der volle Inhalt der QuelleSchwarz, Adam J., Alessandro Gozzi, Alessandro Chessa und Angelo Bifone. „Voxel Scale Complex Networks of Functional Connectivity in the Rat Brain: Neurochemical State Dependence of Global and Local Topological Properties“. Computational and Mathematical Methods in Medicine 2012 (2012): 1–15. http://dx.doi.org/10.1155/2012/615709.
Der volle Inhalt der QuelleFrisaldi, Elisa, Alessandro Piedimonte und Fabrizio Benedetti. „Placebo and Nocebo Effects: A Complex Interplay Between Psychological Factors and Neurochemical Networks“. American Journal of Clinical Hypnosis 57, Nr. 3 (13.01.2015): 267–84. http://dx.doi.org/10.1080/00029157.2014.976785.
Der volle Inhalt der QuelleBrodowicz, Justyna, Edmund Przegaliński, Christian P. Müller und Malgorzata Filip. „Ceramide and Its Related Neurochemical Networks as Targets for Some Brain Disorder Therapies“. Neurotoxicity Research 33, Nr. 2 (25.08.2017): 474–84. http://dx.doi.org/10.1007/s12640-017-9798-6.
Der volle Inhalt der QuelleSamardžija, Bobana, Milan Petrović, Beti Zaharija, Marta Medija, Ana Meštrović, Nicholas J. Bradshaw, Ana Filošević Vujnović und Rozi Andretić Waldowski. „Transgenic Drosophila melanogaster Carrying a Human Full-Length DISC1 Construct (UAS-hflDISC1) Showing Effects on Social Interaction Networks“. Current Issues in Molecular Biology 46, Nr. 8 (03.08.2024): 8526–49. http://dx.doi.org/10.3390/cimb46080502.
Der volle Inhalt der QuelleZiminski, Joseph J., Polytimi Frangou, Vasilis M. Karlaftis, Uzay Emir und Zoe Kourtzi. „Microstructural and neurochemical plasticity mechanisms interact to enhance human perceptual decision-making“. PLOS Biology 21, Nr. 3 (10.03.2023): e3002029. http://dx.doi.org/10.1371/journal.pbio.3002029.
Der volle Inhalt der QuelleDe Pascalis, Vilfredo. „Brain Functional Correlates of Resting Hypnosis and Hypnotizability: A Review“. Brain Sciences 14, Nr. 2 (24.01.2024): 115. http://dx.doi.org/10.3390/brainsci14020115.
Der volle Inhalt der QuelleDissertationen zum Thema "Neurochemical networks"
Butler, Jasmine J. „Action of 5-HT2A receptors on neurotransmitter systems in the mouse brain : application to psychedelics“. Electronic Thesis or Diss., Bordeaux, 2025. http://www.theses.fr/2025BORD0026.
Der volle Inhalt der QuelleThe serotonin 2A receptor subtype (5-HT2AR) has gained interest following a resurgenceof clinical and pre-clinical research on serotonergic psychedelics, compounds withconverging agonist action on the 5-HT2AR. Psychedelics have antidepressant andanxiolytic properties, particularly when paired with therapy. Antagonism at the 5-HT2AR,as part of the pharmacological profile of atypical antipsychotics, may have benefits forschizophrenia and bipolar disorder. Despite their clinical relevance, the known impact of5-HT2ARs on brain function, particularly neurotransmission, is limited. Functional brainnetworks have been conceptualised by correlating electrical or metabolic neuroimagingsignals between brain regions using functional magnetic resonance imaging orencephalography. These studies have shown that psychedelic 5-HT2AR agonists alterthe connectivity of these brain-wide networks. However, neuroimaging is currently unableto assess the neurochemistry of neurotransmitter systems and their interplay. This thesisaddresses the hypothesis that psychedelic 5-HT2AR agonists disrupt the functionalorganization of brain-wide neurotransmitter systems. Tissue content of both classical(glutamate and GABA) and monoaminergic (serotonin, dopamine and noradrenaline)neurotransmitters and their metabolites were measured in 28 regions of the mouse brainfollowing high-affinity 5-HT2AR agonist and antagonist, TCB-2 and MDL100,907respectively. To promote a coherent organisation of neurotransmitter systems mice wereplaced in a forced exploration paradigm and their behaviour was filmed before postmortemneurochemical quantification. A significant challenge of this thesis lies inmanipulating such a large neurochemical dataset that, beyond quantitative modulation,allows for a correlative approach incorporating graph theory to build networks ofneurochemical connectivity. This novel analysis prompted the development of code toaccompany the launch of a neurochemical database, including this dataset, makinganalysis using this new approach accessible.The obtained results demonstrate that a variety of compounds across the 28 brain regionsform distinct neurobiological networks that can be monitored with high-pressure liquidchromatography coupled to electrochemical detection. A striking density ofneurochemical correlations between brain regions in vehicle-treated animals wasobserved, with a distinct regional organisation for dopamine and noradrenaline. The 5-HT2AR agonist TCB-2 (0.3, 3, and 10 mg/kg) as well as the 5-HT2AR antagonist MDL-100,907 (0.2 mg/kg) reduced the number of correlations and disrupted the organisationof correlations for all neurotransmitters across the brain. Some effects of TCB-2, notablyon serotonergic parameters were independent of 5-HT2ARs in several brain regions.Other effects including behavioural parameters such as head twitches or components ofthe exploratory behaviour, as well as the levels of serotonin, dopamine, and noradrenalinein the anterior cingulate cortex were reduced by MDL-100,907 pretreatment. MDL-100,907 alone had very few effects on the quantity of neurochemicals across brainregions. Overall, this thesis highlights that 5-HT2ARs likely play an important role iniiiorganising the coherence of neurotransmitter systems in response to a forced exploratorybehaviour whether or not it is associated with quantitative changes. The thesis offers anew paradigm to address the function of neurotransmitter systems. It enlarges theunderstanding of the mechanism of psychedelic action in the brain including vast brainterritories (sensory, motor, cognitive) with some lateralized effects, and alteredconnectivity of neurotransmission systems
Bücher zum Thema "Neurochemical networks"
Ashraf, Ghulam. Neurochemical Systems and Signaling: From Molecules to Networks. Taylor & Francis Group, 2023.
Den vollen Inhalt der Quelle findenNeurochemical Systems and Signaling: From Molecules to Networks. CRC Press LLC, 2023.
Den vollen Inhalt der Quelle findenAshraf, Ghulam. Neurochemical Systems and Signaling: From Molecules to Networks. Taylor & Francis Group, 2023.
Den vollen Inhalt der Quelle findenAshraf, Ghulam. Neurochemical Systems and Signaling: From Molecules to Networks. Taylor & Francis Group, 2023.
Den vollen Inhalt der Quelle findenAshraf, Ghulam. Neurochemical Systems and Signaling: From Molecules to Networks. Taylor & Francis Group, 2023.
Den vollen Inhalt der Quelle findenAshraf, Ghulam. Neurochemical Systems and Signaling: From Molecules to Networks. Taylor & Francis Group, 2023.
Den vollen Inhalt der Quelle findenCarrión, Victor G., John A. Turner und Carl F. Weems. Sleep. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190201968.003.0005.
Der volle Inhalt der QuelleBuchteile zum Thema "Neurochemical networks"
Ezhov, Alexandr A., Andrei G. Khromov und Svetlana S. Terentyeva. „On Neurochemical Aspects of Agent-Based Memory Model“. In Advances in Neural Networks – ISNN 2016, 375–84. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40663-3_43.
Der volle Inhalt der QuelleKELLEY, ANN E. „Neurochemical Networks Encoding Emotion and Motivation“. In Who Needs Emotions?, 29–78. Oxford University Press, 2005. http://dx.doi.org/10.1093/acprof:oso/9780195166194.003.0003.
Der volle Inhalt der QuelleDevinsky, Orrin, und Mark D’esposito. „Memory and Memory Disorders“. In Neurology Of Cognitive And Behavioral Disorders, 275–301. Oxford University PressNew York, NY, 2003. http://dx.doi.org/10.1093/oso/9780195137644.003.0008.
Der volle Inhalt der QuelleSmith, Yoland, und J. P. Bolam. „Combined approaches to experimental neuroanatomy: combined tracing and immunocytochemical techniques for the study of neuronal microcircuits“. In Experimental Neuroanatomy, 239–68. Oxford University PressOxford, 1992. http://dx.doi.org/10.1093/oso/9780199633265.003.0011.
Der volle Inhalt der QuelleAlexander, Rebecca, und Justine Megan Gatt. „Resilience“. In Genes, brain, and emotions, 286–303. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198793014.003.0020.
Der volle Inhalt der QuellePradhan, Basant. „Social Psychiatry“. In The WASP Textbook on Social Psychiatry, herausgegeben von Rama Rao Gogineni, Andres J. Pumariega, Roy A. Kallivayalil, Marianne Kastrup und Eugenio M. Rothe, 273—C22P115. Oxford University PressNew York, 2023. http://dx.doi.org/10.1093/med/9780197521359.003.0022.
Der volle Inhalt der QuelleYue, Guangxin. „Regulation of Oxytocin on Empathy and Its Neural Mechanism“. In Oxytocin and Social Function [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.112743.
Der volle Inhalt der QuelleBrommelhoff Jessica A. und Sultzer David L. „Brain Structure and Function Related to Depression in Alzheimer's Disease: Contributions from Neuroimaging Research“. In Advances in Alzheimer’s Disease. IOS Press, 2015. https://doi.org/10.3233/978-1-61499-542-5-295.
Der volle Inhalt der QuelleHENDRY, S. H. C. „A Neurochemically Distinct Third Channel in the Macaque Lateral Geniculate Nucleus“. In Thalamic Networks for Relay and Modulation, 251–65. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-08-042274-9.50027-4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Neurochemical networks"
Roever, Paul, Khalid B. Mirza, Konstantin Nikolic und Christofer Toumazou. „A Convolutional Neural Network for Classification of Nerve Activity Based on Action Potential Induced Neurochemical Signatures“. In 2020 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2020. http://dx.doi.org/10.1109/iscas45731.2020.9180734.
Der volle Inhalt der Quelle