Auswahl der wissenschaftlichen Literatur zum Thema „Neurodynamic optimization“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Neurodynamic optimization" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Neurodynamic optimization"

1

Ji, Zheng, Xu Cai, and Xuyang Lou. "A Quantum-Behaved Neurodynamic Approach for Nonconvex Optimization with Constraints." Algorithms 12, no. 7 (2019): 138. http://dx.doi.org/10.3390/a12070138.

Der volle Inhalt der Quelle
Annotation:
This paper presents a quantum-behaved neurodynamic swarm optimization approach to solve the nonconvex optimization problems with inequality constraints. Firstly, the general constrained optimization problem is addressed and a high-performance feedback neural network for solving convex nonlinear programming problems is introduced. The convergence of the proposed neural network is also proved. Then, combined with the quantum-behaved particle swarm method, a quantum-behaved neurodynamic swarm optimization (QNSO) approach is presented. Finally, the performance of the proposed QNSO algorithm is eva
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Le, Xinyi, Sijie Chen, Fei Li, Zheng Yan, and Juntong Xi. "Distributed Neurodynamic Optimization for Energy Internet Management." IEEE Transactions on Systems, Man, and Cybernetics: Systems 49, no. 8 (2019): 1624–33. http://dx.doi.org/10.1109/tsmc.2019.2898551.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ahmadi-Asl, Salman, Valentin Leplat, Anh Huy Phan, and Andrzej Cichocki. "Nonnegative Tensor Decomposition via Collaborative Neurodynamic Optimization." SIAM Journal on Scientific Computing 47, no. 1 (2025): C100—C125. https://doi.org/10.1137/23m1627304.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Li, Guocheng, and Zheng Yan. "Reconstruction of sparse signals via neurodynamic optimization." International Journal of Machine Learning and Cybernetics 10, no. 1 (2017): 15–26. http://dx.doi.org/10.1007/s13042-017-0694-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Leung, Man-Fai, and Jun Wang. "A Collaborative Neurodynamic Approach to Multiobjective Optimization." IEEE Transactions on Neural Networks and Learning Systems 29, no. 11 (2018): 5738–48. http://dx.doi.org/10.1109/tnnls.2018.2806481.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ma, Litao, Jiqiang Chen, Sitian Qin, Lina Zhang, and Feng Zhang. "An Efficient Neurodynamic Approach to Fuzzy Chance-constrained Programming." International Journal on Artificial Intelligence Tools 30, no. 01 (2021): 2140001. http://dx.doi.org/10.1142/s0218213021400017.

Der volle Inhalt der Quelle
Annotation:
In both practical applications and theoretical analysis, there are many fuzzy chance-constrained optimization problems. Currently, there is short of real-time algorithms for solving such problems. Therefore, in this paper, a continuous-time neurodynamic approach is proposed for solving a class of fuzzy chance-constrained optimization problems. Firstly, an equivalent deterministic problem with inequality constraint is discussed, and then a continuous-time neurodynamic approach is proposed. Secondly, a sufficient and necessary optimality condition of the considered optimization problem is obtain
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Yan, Zheng, Jun Wang, and Guocheng Li. "A collective neurodynamic optimization approach to bound-constrained nonconvex optimization." Neural Networks 55 (July 2014): 20–29. http://dx.doi.org/10.1016/j.neunet.2014.03.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wang, Tong, Hao Cui, Zhongyi Zhang, and Jian Wei. "A Neurodynamic Approach for SWIPT Power Splitting Optimization." Journal of Physics: Conference Series 2517, no. 1 (2023): 012010. http://dx.doi.org/10.1088/1742-6596/2517/1/012010.

Der volle Inhalt der Quelle
Annotation:
Abstract Simultaneous wireless information and power transfer (SWIPT) systems using energy from RF signals can effectively solve the energy shortage of wireless devices. However, the existing SWIPT optimization methods using numerical algorithms are difficult to solve the non-convex problem and to adapt to the dynamic communication circumstances. In this paper, a duplex neurodynamic optimization method is used to address the SWIPT system’s power partitioning issue. The information rate maximization problem of the SWIPT system is framed as a biconvex problem. A duplex recurrent neural network i
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Liu, Bao, Xuehui Mei, Haijun Jiang, and Lijun Wu. "A Nonpenalty Neurodynamic Model for Complex-Variable Optimization." Discrete Dynamics in Nature and Society 2021 (February 16, 2021): 1–10. http://dx.doi.org/10.1155/2021/6632257.

Der volle Inhalt der Quelle
Annotation:
In this paper, a complex-variable neural network model is obtained for solving complex-variable optimization problems described by differential inclusion. Based on the nonpenalty idea, the constructed algorithm does not need to design penalty parameters, that is, it is easier to be designed in practical applications. And some theorems for the convergence of the proposed model are given under suitable conditions. Finally, two numerical examples are shown to illustrate the correctness and effectiveness of the proposed optimization model.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zhao, You, Xiaofeng Liao, and Xing He. "Novel projection neurodynamic approaches for constrained convex optimization." Neural Networks 150 (June 2022): 336–49. http://dx.doi.org/10.1016/j.neunet.2022.03.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Dissertationen zum Thema "Neurodynamic optimization"

1

Tassouli, Siham. "Neurodynamic chance-constrained geometric optimization." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG062.

Der volle Inhalt der Quelle
Annotation:
Dans de nombreux problèmes réels, les décideurs sont confrontés à des incertitudes qui peuvent affecter les résultats de leurs décisions. Ces incertitudes découlent de diverses sources, telles que la variabilité de la demande, les conditions fluctuantes du marché ou des informations incomplètes sur les paramètres du système. Les approches traditionnelles d'optimisation déterministe supposent que tous les paramètres sont connus avec certitude, ce qui peut ne pas refléter avec précision la réalité du problème. L'optimisation sous contraintes de probabilité offre une approche plus réaliste et rob
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wu, Dawen. "Solving Some Nonlinear Optimization Problems with Deep Learning." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG083.

Der volle Inhalt der Quelle
Annotation:
Cette thèse considère quatre types de problèmes d'optimisation non linéaire, à savoir les jeux de bimatrice, les équations de projection non linéaire (NPEs), les problèmes d'optimisation convexe non lisse (NCOPs) et les jeux à contraintes stochastiques (CCGs). Ces quatre classes de problèmes d'optimisation non linéaire trouvent de nombreuses applications dans divers domaines tels que l'ingénierie, l'informatique, l'économie et la finance. Notre objectif est d'introduire des algorithmes basés sur l'apprentissage profond pour calculer efficacement les solutions optimales de ces problèmes d'optim
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

"A neurodynamic optimization approach to constrained pseudoconvex optimization." 2011. http://library.cuhk.edu.hk/record=b5894791.

Der volle Inhalt der Quelle
Annotation:
Guo, Zhishan.<br>Thesis (M.Phil.)--Chinese University of Hong Kong, 2011.<br>Includes bibliographical references (p. 71-82).<br>Abstracts in English and Chinese.<br>Abstract --- p.i<br>Acknowledgement i --- p.ii<br>Chapter 1 --- Introduction --- p.1<br>Chapter 1.1 --- Constrained Pseudoconvex Optimization --- p.1<br>Chapter 1.2 --- Recurrent Neural Networks --- p.4<br>Chapter 1.3 --- Thesis Organization --- p.7<br>Chapter 2 --- Literature Review --- p.8<br>Chapter 2.1 --- Pseudo convex Optimization --- p.8<br>Chapter 2.2 --- Recurrent Neural Networks --- p.10<br>Chapter 3 --- Model De
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

"Collective Neurodynamic Systems: Synchronization and Optimization." 2016. http://repository.lib.cuhk.edu.hk/en/item/cuhk-1292660.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Neurodynamic optimization"

1

Jun, Wang. "Neurodynamic Optimization and Its Applications in Robotics." In Advances in Robotics. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03983-6_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Leung, Man-Fai, and Jun Wang. "Neurodynamic Approaches to Cardinality-Constrained Portfolio Optimization." In Intelligent Systems Reference Library. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-61037-0_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Qin, Sitian, Xinyi Le, and Jun Wang. "A Neurodynamic Optimization Approach to Bilevel Linear Programming." In Advances in Neural Networks – ISNN 2015. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25393-0_46.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Leung, Man-Fai, and Jun Wang. "A Collaborative Neurodynamic Optimization Approach to Bicriteria Portfolio Selection." In Advances in Neural Networks – ISNN 2019. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22796-8_34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Fan, Jianchao, and Jun Wang. "A Collective Neurodynamic Optimization Approach to Nonnegative Tensor Decomposition." In Advances in Neural Networks - ISNN 2017. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59081-3_25.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Xu, Yiyao, and Sitian Qin. "A Penalty-Like Neurodynamic Approach to Convex Optimization Problems with Set Constraint." In Lecture Notes in Computer Science. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-4399-5_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Liu, Qixing, Zhongying Chen, Yuhu Wu, and Tielong Shen. "A Collaborative Neurodynamic Optimization Algorithm of Eco-Routing with Electricity Allocation for PHEVs." In Lecture Notes in Computer Science. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-4399-5_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Le, Xinyi, Sijie Chen, Yu Zheng, and Juntong Xi. "A Multiple-objective Neurodynamic Optimization to Electric Load Management Under Demand-Response Program." In Advances in Neural Networks - ISNN 2017. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59081-3_21.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Yan, Zheng, Jie Lu, and Guangquan Zhang. "Distributed Model Predictive Control of Linear Systems with Coupled Constraints Based on Collective Neurodynamic Optimization." In AI 2018: Advances in Artificial Intelligence. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03991-2_31.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wang, Jiasen, Jun Wang, and Dongbin Zhao. "Dynamically Weighted Model Predictive Control of Affine Nonlinear Systems Based on Two-Timescale Neurodynamic Optimization." In Advances in Neural Networks – ISNN 2020. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64221-1_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Neurodynamic optimization"

1

Qi, Yucheng, Mengxin Wang, Xinrui Jiang, and Sitian Qin. "A Neurodynamic Approach for Distributed Optimization with Delayed Feedback." In 2025 13th International Conference on Intelligent Control and Information Processing (ICICIP). IEEE, 2025. https://doi.org/10.1109/icicip64458.2025.10898098.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Huang, Haoen, Zhigang Zeng, and Jun Wang. "A Discrete-Time Collaborative Neurodynamic Approach to Distributed Global Optimization." In 2025 13th International Conference on Intelligent Control and Information Processing (ICICIP). IEEE, 2025. https://doi.org/10.1109/icicip64458.2025.10898108.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zhao, You, Xing He, Hangjun Che, and Huaqing Li. "Accelerated Projection Neurodynamic Approach for Convex Optimization with Affine Equality and Inequality Constraints." In 2024 International Conference on Neuromorphic Computing (ICNC). IEEE, 2024. https://doi.org/10.1109/icnc64304.2024.10987818.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Zhang, Huiyan, Junrong Zhang, and Xin Han. "A Novel Accelerated Projection Neurodynamic Model for Convex Optimization Problem Constrained by Set and Linear-Equality." In 2024 6th International Conference on Electronic Engineering and Informatics (EEI). IEEE, 2024. http://dx.doi.org/10.1109/eei63073.2024.10696366.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Li, Xinqi, Jun Wang, and Sam Kwong. "Alternative Mutation Operators in Collaborative Neurodynamic Optimization." In 2020 10th International Conference on Information Science and Technology (ICIST). IEEE, 2020. http://dx.doi.org/10.1109/icist49303.2020.9202136.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wang, Yadi, Xiaoping Li, and Jun Wang. "A Neurodynamic Approach to L0-Constrained Optimization." In 2020 12th International Conference on Advanced Computational Intelligence (ICACI). IEEE, 2020. http://dx.doi.org/10.1109/icaci49185.2020.9177499.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Fang, Xiaomeng, Xinyi Le, and Fei Li. "Distributed Neurodynamic Optimization for Coordination of Redundant Robots." In 2019 9th International Conference on Information Science and Technology (ICIST). IEEE, 2019. http://dx.doi.org/10.1109/icist.2019.8836826.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wang, Jun. "Neurodynamic optimization and its applications for winners-take-all." In 2009 2nd IEEE International Conference on Computer Science and Information Technology. IEEE, 2009. http://dx.doi.org/10.1109/iccsit.2009.5235008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Fan, Jianchao, Ye Wang, Jianhua Zhao, Xiang Wang, and Xinxin Wang. "Blind source separation based on collective neurodynamic optimization approach." In 2017 36th Chinese Control Conference (CCC). IEEE, 2017. http://dx.doi.org/10.23919/chicc.2017.8027656.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wang, Jun. "Neurodynamic optimization with its application for model predictive control." In 2009 3rd International Workshop on Soft Computing Applications (SOFA). IEEE, 2009. http://dx.doi.org/10.1109/sofa.2009.5254883.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!