Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „New broad-Spectrum antiviral“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "New broad-Spectrum antiviral" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "New broad-Spectrum antiviral"
Geraghty, Robert, Matthew Aliota und Laurent Bonnac. „Broad-Spectrum Antiviral Strategies and Nucleoside Analogues“. Viruses 13, Nr. 4 (13.04.2021): 667. http://dx.doi.org/10.3390/v13040667.
Der volle Inhalt der QuelleTian, Wen-Jun, und Xiao-Jia Wang. „Broad-Spectrum Antivirals Derived from Natural Products“. Viruses 15, Nr. 5 (30.04.2023): 1100. http://dx.doi.org/10.3390/v15051100.
Der volle Inhalt der QuelleKrzyzowska, Malgorzata, Martyna Janicka, Emilia Tomaszewska, Katarzyna Ranoszek-Soliwoda, Grzegorz Celichowski, Jarosław Grobelny und Pawel Szymanski. „Lactoferrin-Conjugated Nanoparticles as New Antivirals“. Pharmaceutics 14, Nr. 9 (03.09.2022): 1862. http://dx.doi.org/10.3390/pharmaceutics14091862.
Der volle Inhalt der QuelleGhanbari, Reza, Ali Teimoori, Anahita Sadeghi, Ashraf Mohamadkhani, Sama Rezasoltani, Ebrahim Asadi, Abolghasem Jouyban und Susan CJ Sumner. „Existing antiviral options against SARS-CoV-2 replication in COVID-19 patients“. Future Microbiology 15, Nr. 18 (Dezember 2020): 1747–58. http://dx.doi.org/10.2217/fmb-2020-0120.
Der volle Inhalt der QuelleGao, Chengfeng, Chunxia Wen, Zhifeng Li, Shuhan Lin, Shu Gao, Haida Ding, Peng Zou, Zheng Xing und Yufeng Yu. „Fludarabine Inhibits Infection of Zika Virus, SFTS Phlebovirus, and Enterovirus A71“. Viruses 13, Nr. 5 (27.04.2021): 774. http://dx.doi.org/10.3390/v13050774.
Der volle Inhalt der QuelleVicente, Josefina, Martina Benedetti, Paula Martelliti, Luciana Vázquez, María Virginia Gentilini, Freddy Armando Peñaranda Figueredo, Mercedes Soledad Nabaes Jodar, Mariana Viegas, Andrea Alejandra Barquero und Carlos Alberto Bueno. „The Flavonoid Cyanidin Shows Immunomodulatory and Broad-Spectrum Antiviral Properties, Including SARS-CoV-2“. Viruses 15, Nr. 4 (18.04.2023): 989. http://dx.doi.org/10.3390/v15040989.
Der volle Inhalt der QuelleTampere, Marianna, Aleksandra Pettke, Cristiano Salata, Olov Wallner, Tobias Koolmeister, Armando Cazares-Körner, Torkild Visnes et al. „Novel Broad-Spectrum Antiviral Inhibitors Targeting Host Factors Essential for Replication of Pathogenic RNA Viruses“. Viruses 12, Nr. 12 (10.12.2020): 1423. http://dx.doi.org/10.3390/v12121423.
Der volle Inhalt der QuelleLee, Choongho. „Carrageenans as Broad-Spectrum Microbicides: Current Status and Challenges“. Marine Drugs 18, Nr. 9 (21.08.2020): 435. http://dx.doi.org/10.3390/md18090435.
Der volle Inhalt der Quellede Wispelaere, Mélissanne, Margot Carocci, Dominique J. Burri, William J. Neidermyer, Calla M. Olson, Imme Roggenbach, Yanke Liang et al. „A broad-spectrum antiviral molecule, QL47, selectively inhibits eukaryotic translation“. Journal of Biological Chemistry 295, Nr. 6 (30.12.2019): 1694–703. http://dx.doi.org/10.1074/jbc.ra119.011132.
Der volle Inhalt der QuelleJones, Jeremy C., Bindumadhav M. Marathe, Christian Lerner, Lukas Kreis, Rodolfo Gasser, Philippe Noriel Q. Pascua, Isabel Najera und Elena A. Govorkova. „A Novel Endonuclease Inhibitor Exhibits Broad-Spectrum Anti-Influenza Virus ActivityIn Vitro“. Antimicrobial Agents and Chemotherapy 60, Nr. 9 (05.07.2016): 5504–14. http://dx.doi.org/10.1128/aac.00888-16.
Der volle Inhalt der QuelleDissertationen zum Thema "New broad-Spectrum antiviral"
LUCIA, FALSITTA. „DDX3, a new frontier in broad-spectrum antiviral therapy: synthesis of potential inhibitors“. Doctoral thesis, Università di Siena, 2020. http://hdl.handle.net/11365/1095615.
Der volle Inhalt der QuelleMathieu, Thomas. „Etude de deux ANPs Antiviraux : caractéristiques physico-chimiques du LAVR-289 et formulations innovantes du Ténofovir“. Electronic Thesis or Diss., Orléans, 2024. http://www.theses.fr/2024ORLE1021.
Der volle Inhalt der QuelleThis thesis is part of one of the stages in the preclinical development of a drug candidate, which consists in determining various physico-chemical characteristics of the compound and exploring its formulation. The molecule in preclinical phase is LAVR-289, a novel broad-spectrum antiviral belonging to the acyclonucleoside phosphonate family, developed in prodrug form.We began by determining various parameters of LAVR-289 such as pKa, Log P and critical aggregation concentration by UV-visible spectrophotometry, reversed phase liquid chromatography and spectrofluorimetry, respectively. We also developed a HPLC-UV analytical method to determine the purity of LAVR-289 synthesis batches. This analytical method was used to determine the chemical stability of this molecule with respect to solvents and pH, as well as its plasma enzymatic stability. LC-HR-MS analyses were used to obtain the structure of degradation products and some metabolites. In the second part, we have synthesised new polymeric nanocarriers based on molecular imprinting technology for the controlled release of phosphonate acyclonucleosides. This exploratory study was carried out on Tenofovir, an antiviral used in the treatment of HIV and HBV infections. These nanomaterials were developed by precipitation polymerisation or by creating core-shell systems after surface derivatisation of biodegradable and biocompatible nanoparticles synthesised in the laboratory. These polymers were created from monomers derived from the functionalisation of pyrimidine bases. These materials showed slower temperature-dependent release kinetics of Tenofovir than the no imprinted form
Bücher zum Thema "New broad-Spectrum antiviral"
Martinez, Tyler. Encephalitis. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199976805.003.0007.
Der volle Inhalt der QuelleBuchteile zum Thema "New broad-Spectrum antiviral"
Elazar, Menashe, und Jeffrey S. Glenn. „Confronting New and Old Antiviral Threats: Broad Spectrum Potential of Prenylation Inhibitors“. In Antiviral Drug Discovery for Emerging Diseases and Bioterrorism Threats, 249–61. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471716715.ch11.
Der volle Inhalt der QuelleJoy, Christy, und Marria C. Cyriac. „Phytochemicals as Potential Drug Candidates for SARS Cov-2: An RDRp Based In-Silico Drug Designing“. In Proceedings of the Conference BioSangam 2022: Emerging Trends in Biotechnology (BIOSANGAM 2022), 58–69. Dordrecht: Atlantis Press International BV, 2022. http://dx.doi.org/10.2991/978-94-6463-020-6_7.
Der volle Inhalt der QuelleAshfaq, Ghina, Junaid Ali, Saira Arif, Memoon Sajid, Gul Hassan und Ahmed Shuja Syed. „Graphene and its Derivatives: A Potential Solution for Microbial Control“. In 2D Materials: Chemistry and Applications (Part 1), 128–58. BENTHAM SCIENCE PUBLISHERS, 2024. http://dx.doi.org/10.2174/9789815223675124010007.
Der volle Inhalt der QuelleK. Singh, Ashok, Aakansha Singh und Ankit Kumar Dubey. „Repurposed Therapeutic Strategies towards COVID-19 Potential Targets Based on Genomics and Protein Structure Remodeling“. In Biotechnology to Combat COVID-19 [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96728.
Der volle Inhalt der QuelleSuresh, J. Immanuel, und M. S. Sri Janani. „Seaweed“. In Exploring Complementary and Alternative Medicinal Products in Disease Therapy, 211–24. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-7998-4120-3.ch009.
Der volle Inhalt der QuelleKolayli, Sevgi. „A Miracle Food Supplement Obtained from Beehives: Propolis“. In Herbs and Spices - New Perspectives in Human Health and Food Industry [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.1004254.
Der volle Inhalt der QuelleKumar Sachan, Rohan Samir, Ritu Bala, Abdel Rahman M. Al-Tawaha, Samia Khanum und Arun Karnwal. „Antimicrobial Drugs Obtained from Marine Algae“. In Frontiers in Antimicrobial Agents, 213–47. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815080056123020011.
Der volle Inhalt der QuelleUpadhyay, Sonal, Ravi Bhushan, Pawan Kumar Dubey, Bashir A Sheikh, Mithun Rudrapal und James H. Zothantluanga. „Aromatic Plants, Essential oils, Carminatives, Tea Plants and Expectorant Herbs for the Management of COVID-19“. In Medicinal Plants, Phytomedicines and Traditional Herbal Remedies for Drug Discovery and Development against COVID-19, 219–32. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815049510123010011.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "New broad-Spectrum antiviral"
Wang, X. F., und M. Schuldiner. Systems biology approaches to dissect virus-host interactions to develop crops with broad-spectrum virus resistance. Israel: United States-Israel Binational Agricultural Research and Development Fund, 2020. http://dx.doi.org/10.32747/2020.8134163.bard.
Der volle Inhalt der QuelleGal-On, Amit, Shou-Wei Ding, Victor P. Gaba und Harry S. Paris. role of RNA-dependent RNA polymerase 1 in plant virus defense. United States Department of Agriculture, Januar 2012. http://dx.doi.org/10.32747/2012.7597919.bard.
Der volle Inhalt der Quelle