Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Next-Generation probiotic“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Next-Generation probiotic" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Next-Generation probiotic"
Özışık, Damla, und Nihat Akın. „Akkermansia muciniphila and Faecalibacterium prausnitzii as next generation probiotic: Implications for health“. Food and Health 11, Nr. 1 (2025): 77–90. https://doi.org/10.3153/fh25007.
Der volle Inhalt der QuelleZhai, Qixiao, Saisai Feng, Narbad Arjan und Wei Chen. „A next generation probiotic, Akkermansia muciniphila“. Critical Reviews in Food Science and Nutrition 59, Nr. 19 (29.10.2018): 3227–36. http://dx.doi.org/10.1080/10408398.2018.1517725.
Der volle Inhalt der QuelleLi, Jianhong, Jing Xu, Xue Guo, Haoming Xu, Chen Huang, Yuqiang Nie und Youlian Zhou. „Odoribacter splanchnicus—A Next-Generation Probiotic Candidate“. Microorganisms 13, Nr. 4 (03.04.2025): 815. https://doi.org/10.3390/microorganisms13040815.
Der volle Inhalt der QuelleSionek, Barbara, Aleksandra Szydłowska, Dorota Zielińska, Katarzyna Neffe-Skocińska und Danuta Kołożyn-Krajewska. „Beneficial Bacteria Isolated from Food in Relation to the Next Generation of Probiotics“. Microorganisms 11, Nr. 7 (30.06.2023): 1714. http://dx.doi.org/10.3390/microorganisms11071714.
Der volle Inhalt der QuelleLin, Li-Te, Chia-Jung Li, Chia-Chun Wu, Li-Fei Pan und Kuan-Hao Tsui. „Pilot Study on Next-Generation Sequencing Analysis of Vaginal Microbiota in Clinically Infertile Patients Treated with Probiotics“. Journal of Clinical Medicine 13, Nr. 12 (11.06.2024): 3420. http://dx.doi.org/10.3390/jcm13123420.
Der volle Inhalt der QuelleŠtofilová, Jana, Monika Kvaková, Anna Kamlárová, Emília Hijová, Izabela Bertková und Zuzana Guľašová. „Probiotic-Based Intervention in the Treatment of Ulcerative Colitis: Conventional and New Approaches“. Biomedicines 10, Nr. 9 (09.09.2022): 2236. http://dx.doi.org/10.3390/biomedicines10092236.
Der volle Inhalt der QuelleJung, Hye Young, und Kwang Wook Kim. „An Evidence-Based Review of Probiotics and Prebiotics“. Science Insights 40, Nr. 6 (30.05.2022): 527–31. http://dx.doi.org/10.15354/si.22.re055.
Der volle Inhalt der QuelleAsar, Remziye, Sinem Erenler, Dilara Devecioglu, Humeyra Ispirli, Funda Karbancioglu-Guler, Hale Inci Ozturk und Enes Dertli. „Understanding the Functionality of Probiotics on the Edge of Artificial Intelligence (AI) Era“. Fermentation 11, Nr. 5 (05.05.2025): 259. https://doi.org/10.3390/fermentation11050259.
Der volle Inhalt der QuelleStastna, Miroslava. „The Role of Proteomics in Identification of Key Proteins of Bacterial Cells with Focus on Probiotic Bacteria“. International Journal of Molecular Sciences 25, Nr. 16 (06.08.2024): 8564. http://dx.doi.org/10.3390/ijms25168564.
Der volle Inhalt der QuelleTullio, Vivian. „Probiotic Yeasts: A Developing Reality?“ Journal of Fungi 10, Nr. 7 (16.07.2024): 489. http://dx.doi.org/10.3390/jof10070489.
Der volle Inhalt der QuelleDissertationen zum Thema "Next-Generation probiotic"
Vilela, rodrigues Thaís. „Caractérisation de la protéine MAM (Microbial Anti-inflammatory Molecule) du genre Faecalibacterium : structure, diversité et implications anti-inflammatoires“. Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPASB023.
Der volle Inhalt der QuelleThe Microbial Anti-inflammatory Molecule (MAM) is a unique protein produced by the genus Faecalibacterium, a key group of commensal bacteria in the human gut. Among these, Faecalibacterium duncaniae (formerly F. prausnitzii) is highly abundant and closely associated with gut homeostasis and overall health. MAM has demonstrated significant anti-inflammatory properties; however, its molecular and functional characteristics, as well as its mechanisms of action, remain poorly understood. This work aims to investigate the physiological role of MAM in Faecalibacterium and its interaction with the host. Using proteomics, structural bioinformatics, and microscopy techniques, we characterized MAM's molecular properties and its diversity within the genus. Additionally, we evaluated MAM's immunomodulatory activity through in vitro and in vivo assays. Our findings reveal that MAM is processed and transported via the PCAT ABC transporter to the cell envelope of F. duncaniae, where it forms a supramolecular hexameric lattice, likely contributing to cell envelope organization. This hexameric structure was conserved across multiple Faecalibacterium species, as demonstrated by in silico analyses. Although the exact positioning of the lattice within the cell envelope remains undetermined, F. duncaniae exhibits a distinctive envelope architecture with a thin peptidoglycan layer and an outer layer that diverges from classical diderm bacteria. Functional assays revealed that purified recombinant MAM effectively improved macroscopic signs in a murine model of intestinal inflammation, alongside promoting anti-inflammatory responses in vitro. This work provides a pioneering characterization of MAM, elucidating its molecular attributes and functional implications for the cell envelope organization of F. duncaniae. Additionally, it advances the understanding of Faecalibacterium's role in promoting gut health and its biotherapeutic potential. These findings also contribute to broader discussions on the unique envelope organization of the genus and the molecular basis of host-microbe interactions
Domingos, Melany Martins Correia. „Viability, stability and antimicrobial susceptibility studies of a “next generation probiotic” : faecalibacterium prausnitzii“. Master's thesis, 2020. http://hdl.handle.net/10400.14/33311.
Der volle Inhalt der QuelleThe gut commensal bacterium Faecalibacterium prausnitzii has been recognized as a next generation probiotic candidate due to its promising outcomes in the treatment and prevention of intestinal inflammatory diseases. However, its strict anaerobic nature is a hurdle in the development of foods, nutraceutical or therapeutic products incorporating this novel bacterium. Therefore, the main objective of this thesis was to explore freeze-dried formulations containing prebiotic, cryoprotectant and antioxidant agents as a biotechnological strategy to enhance F. prausnitzii viability and stability under aerobic storage and when subjected to harsh gastrointestinal tract conditions. Firstly, a comprehensive phenotypic characterization involving the F. prausnitzii DSM 17677 strain was performed. The growth kinetics revealed that a second bacterial subculture with 10- 12 hours of incubation time corresponds to a bacterial culture in the exponential phase with high viable cells numbers (8.43 ± 0.04 Log CFU/mL). The gram staining and morphological traits confirmed this strain is a gram-negative rod, forming milky white, convex and circular colonies. Exposure to ambient air revealed a high inhibition (< LOD) of bacterial viability when exposing inoculated plates for 1 minute, while as a bacterial suspension within tubes in the presence of oxygen, their viability was preserved (7.40 ± 0.13 Log CFU/mL versus initial control of 7.29 ± 0.25 Log CFU/mL). Upon exposure to acidic pH for 2 hours, a high inhibition of bacterial viability was observed at pH 3 while at pH 5 the viability only underwent slight fluctuations (7.40 ± 0.23 Log CFU/mL for control versus 7.17 ± 0.19 Log CFU/mL for pH 5 exposure). A high sensitivity of F. prausnitzii DSM 17677 when exposed to bile at different concentrations [0.1-0.5 % (m/v)] for 3 hours was also verified. In addition, the antimicrobial susceptibility testing revealed the resistance of F. prausnitzii to ampicillin, gentamicin, kanamycin, streptomycin and erythromycin and susceptibility to vancomycin, clindamycin, tetracycline and chloramphenicol. After phenotypic characterization, freeze dried formulations to increase F. prausnitzii viability during aerobic storage were developed, with formulation containing inulin at 5% (m/v), sucrose at 5% (m/v), cysteine at 0.2% (m/v) and riboflavin (16.5 mM) showing survival rates higher than 65 % and acceptable viable cell numbers (> 4.5 Log CFU/g) during 4 days of aerobic storage at room temperature. However, when this formulation was exposed to bile and acidic pHs, no further protection was granted in comparison to non-formulated bacteria.
Almeida, Diana Isabel Pinto de. „Strategies to promote Akkermansia muciniphila viability and stability under stress conditions“. Master's thesis, 2018. http://hdl.handle.net/10773/25156.
Der volle Inhalt der QuelleNos últimos anos, a comunidade científica tem vindo a reunir um maior conhecimento das dinâmicas que estão na base dos distúrbios metabólicos e inflamatórios, muitos dos quais relacionados com a alimentação. O intenso crescimento destes distúrbios está a atingir proporções epidémicas, trazendo novos desafios aos clínicos e investigadores. As funções moduladoras e as propriedades específicas que as bactérias benéficas/probióticas possuem no contexto do ecossistema intestinal, parecem ser a chave para prevenir tais perturbações. Atualmente, Akkermansia muciniphila tem emergido como um “probiótico do futuro ou de nova geração" (“Next Generation Probiotics” – NGP), dado o seu potencial na prevenção e tratamento de distúrbios inflamatórios/cardio-metabólicos. Os desafios envolvendo esta bactéria probiótica residem principalmente na sua sensibilidade à atmosfera aeróbia e baixo pH. Por estas razões, esta tese tem como objetivo explorar formulações liofilizadas envolvendo agentes protetores tais como antioxidantes, prebióticos e agentes de volume bem como a microencapsulação como estratégias tecnológicas para aumentar a viabilidade da A. muciniphila face à passagem no trato gastrointestinal (GI) e promover a sua estabilidade durante o armazenamento aeróbio. Primeiramente, uma caracterização fenotípica da estirpe A. muciniphila DSM 22959 foi efetuada. Nesta análise, características morfológicas e a coloração face à técnica de Gram, confirmam a sua natureza Gram-negativa e morfologia cocobacilar. Além disso, foi demonstrado que os ácidos miristoleico e pentadecanóico são os principais ácidos gordos presentes na membrana de A. muciniphila. Adicionalmente, as suas colónias foram caracterizadas como sendo pequenas, circulares e translúcidas. A exposição ao ar ambiente revelou a capacidade de sobrevivência de A. muciniphila até 60 horas em atmosfera aeróbia, a 37 ºC. Apesar da tendência de declínio na viabilidade, a A. muciniphila foi capaz de sobreviver à atmosfera aeróbia durante 60 h. Também, as propriedades de adesão desta bactéria ao epitélio intestinal foram comprovadas usando duas linhagens epiteliais, nomeadamente Caco-2 e HT29-MTX. Após caracterização fenotípica, formulações liofilizadas e um método de encapsulação foram explorados como estratégias tecnológicas para promover a viabilidade e estabilidade de A. muciniphila quando expostas ao trato GI e armazenamento aeróbio. No geral, obtiveram-se valores elevados nos liofilizados com a formulação contendo inulina (10 % m/v), riboflavina (16.5 mM) e glutationa (0.2 % m/v) do que no seu liofilizado homólogo com amido (10.2 vs 6.3 log UFC g-1). Além disso, a adição de amido à formulação conferiu maior estabilidade durante o armazenamento aeróbico. No entanto, em ambas as formulações A. muciniphila demonstrou maior suscetibilidade ao trato GI e ao armazenamento aeróbio do que na sua forma não-formulada. Numa tentativa de reduzir a sensibilidade face ao trato GI e armazenamento aeróbio, A. muciniphila foi encapsulada através do método de emulsificação/gelificação interna, numa matriz contendo alginato-Na (4 % m/v), CaCO3 (500 mM) e isolado de proteína de soro de leite desnaturado (DWPI; 10 % m/v). Akkermansia muciniphila foi eficientemente encapsulada (95.8 ± 0.01 %), em que o diâmetro das microcápsulas foi menor do que 100 μm. Para além disso, A. muciniphila encapsulada demonstrou elevada resistência às condições GI e ao armazenamento aeróbio, uma vez que a sua viabilidade apenas decresceu um ciclo logarítmico após exposição simulada ao trato GI apresentando elevada estabilidade após 7 dias de armazenamento aeróbio, a 4ºC. Em suma, as microcápsulas de alginato-Na:CaCO3:DWPI revelaram ser a melhor estratégia na proteção de A. muciniphila contra as condições desfavoráveis do trato GI e de armazenamento em aerobiose.
Mestrado em Microbiologia
Laranjeira, Patrícia Coutinho. „Probióticos – revisão bibliográfica e perspetivas futuras“. Master's thesis, 2020. http://hdl.handle.net/10284/9315.
Der volle Inhalt der QuelleThe intestinal microbiota, a group of microbial communities that colonize the gastrointestinal tract, maintains a symbiotic relationship with the host and is involved in essential processes for maintaining health. Changes in the composition and function of this complex system result in the development of diseases. So, microbiota modulation may be important for disease prevention and also be used as a therapeutic adjuvant. Technical advances allowed to investigate in more detail the composition of the microbiota and its relationship with the host, resulting in the development of new therapeutic approaches for the treatment of multifactorial and emerging diseases. Probiotics, according to the Food and Agriculture Organization (FAO) and the World Health Organization (WHO), are “live microorganisms that, when administered in adequate amounts, confer benefits to the host”. The beneficial effects of probiotics are diverse. Through modulation of the microbiota, probiotics modulate the immune response, are responsible for strengthening the intestinal epithelial barrier and also impact the function of diverse organs of the body. Its administration has a wide use in the treatment and prevention of gastrointestinal pathologies and may also be used for the treatment pathologies that affect other systems. The aim of this dissertation is to carry out a bibliographic review of the current scientific knowledge on the role of probiotics in human health, relating it to the microbiota composition and also approach the mechanisms by which they exert beneficial effects in different pathologies.
Bücher zum Thema "Next-Generation probiotic"
Langella, Philippe, Francisco Guarner und Rebeca Martín, Hrsg. Next-Generation Probiotics: From Commensal Bacteria to Novel Drugs and Food Supplements. Frontiers Media SA, 2019. http://dx.doi.org/10.3389/978-2-88963-196-4.
Der volle Inhalt der QuelleBuchteile zum Thema "Next-Generation probiotic"
Mishra, Anuradha, Pragyandip P. Dash, Afreen Usmani, Satya Prakash Singh und Anup K. Sirbaiya. „Probiotics as Next Generation Strategy for Cancer Therapy“. In Probiotic Research in Therapeutics, 69–94. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8214-1_4.
Der volle Inhalt der QuelleLaptev, Georgiy, Darya Turina, Elena Yildirim, Larisa Ilina, Elena Gorfunkel, Valentina Filippova, Andrey Dubrovin et al. „Analysis of Changes in Broiler Microbiome Biodiversity Parameters Due to Intake of Glyphosate and Probiotic Bacillus Sp. Gl-8 Using Next-Generation Sequencing“. In Agriculture Digitalization and Organic Production, 161–70. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4165-0_15.
Der volle Inhalt der QuelleSingh, Birbal, Gorakh Mal, Rajkumar Singh Kalra und Francesco Marotta. „Probiotics as Next-Generation Mucosal Vaccine Vectors“. In Probiotics as Live Biotherapeutics for Veterinary and Human Health, Volume 2, 569–92. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-65459-6_26.
Der volle Inhalt der QuelleKhan, Shams Tabrez, und Abdul Malik. „Next-Generation Probiotics Their Molecular Taxonomy and Health Benefits“. In Health and Safety Aspects of Food Processing Technologies, 471–500. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24903-8_16.
Der volle Inhalt der QuelleKaistha, Shilpa Deshpande, und Neelima Deshpande. „Traditional Probiotics, Next-Generation Probiotics and Engineered Live Biotherapeutic Products in Chronic Wound Healing“. In Wound Healing Research, 247–84. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2677-7_8.
Der volle Inhalt der QuelleHussain, Abrar, und Syed Abid Ali. „Exploring Enterococcus Species for their Next-Generation Probiotics Potential“. In Probiotics, Prebiotics, and Postbiotics in Human Health and Sustainable Food Systems [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.1007306.
Der volle Inhalt der QuelleBarbosa, Joana Cristina, Daniela Machado, Diana Almeida, José Carlos Andrade, Adriano Brandelli, Ana Maria Gomes und Ana Cristina Freitas. „Next-generation probiotics“. In Probiotics, 483–502. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-323-85170-1.00012-9.
Der volle Inhalt der QuelleKumari, Manorama, und Anusha Kokkiligadda. „Next-Generation Probiotics“. In Advances in Probiotics, 45–79. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-822909-5.00004-6.
Der volle Inhalt der QuelleSánchez Pellicer, Pedro, und Vicente Navarro López. „Probiotics-based Anticancer Immunity In Bladder Cancer“. In Anticancer Immunity: Reviewing the Potential of Probiotics, 22–51. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815165135123040005.
Der volle Inhalt der QuelleNarzary, Yutika. „Next-generation probiotics and animal health“. In Human and Animal Microbiome Engineering, 367–79. Elsevier, 2025. http://dx.doi.org/10.1016/b978-0-443-22348-8.00022-2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Next-Generation probiotic"
Horská, Elena. „Next-Generation Tools for Analysing Consumer Attitudes and Perceptions Toward Probiotic Products“. In International Scientific Days 2024. "From Field to Finance: Addressing Economic Challenges". Conference Proceedings. Nitra, Slovak Republic, 152–61. Slovak University of Agriculture in Nitra, Slovakia, 2025. https://doi.org/10.15414/2024.9788055228167.152-161.
Der volle Inhalt der QuelleTallei, T. E., Fatimawali, A. M. Sumual, M. A. Gani, G. A. V. Pollo, A. A. Adam und J. J. Pelealu. „Potential Next-Generation Probiotics Isolated from Romaine Lettuce (Lactuca sativa L. var. longifolia) Fermented Brine“. In 10th International Seminar and 12th Congress of Indonesian Society for Microbiology (ISISM 2019). Paris, France: Atlantis Press, 2021. http://dx.doi.org/10.2991/absr.k.210810.020.
Der volle Inhalt der Quelle