Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Next-to-leading order (NLO)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Next-to-leading order (NLO)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Next-to-leading order (NLO)"
CONTOGOURIS, A. P., und Z. MEREBASHVILI. „APPROXIMATE NEXT-TO-LEADING ORDER AND NEXT-TO-NEXT-TO-LEADING ORDER CORRECTIONS“. International Journal of Modern Physics A 18, Nr. 06 (10.03.2003): 957–66. http://dx.doi.org/10.1142/s0217751x03013983.
Der volle Inhalt der QuelleCHIRILLI, GIOVANNI ANTONIO. „SMALL-x EVOLUTION IN THE NEXT-TO-LEADING ORDER“. Modern Physics Letters A 24, Nr. 35n37 (07.12.2009): 3052–61. http://dx.doi.org/10.1142/s0217732309001261.
Der volle Inhalt der QuelleBALITSKY, IAN. „PHOTON IMPACT FACTOR AND kT FACTORIZATION IN THE NEXT-TO-LEADING ORDER“. International Journal of Modern Physics: Conference Series 20 (Januar 2012): 187–99. http://dx.doi.org/10.1142/s2010194512009233.
Der volle Inhalt der QuelleTriantafyllopoulos, D. N. „Forward particle production in proton-nucleus collisions at next-to-leading order“. EPJ Web of Conferences 192 (2018): 00014. http://dx.doi.org/10.1051/epjconf/201819200014.
Der volle Inhalt der QuelleCarloni Calame, Carlo M., Mauro Chiesa, Guido Montagna, Oreste Nicrosini und Fulvio Piccinini. „Muon-electron scattering at next-to-leading order accuracy“. EPJ Web of Conferences 212 (2019): 05002. http://dx.doi.org/10.1051/epjconf/201921205002.
Der volle Inhalt der QuelleFIGY, TERRANCE. „NEXT-TO-LEADING ORDER QCD CORRECTIONS TO LIGHT HIGGS PAIR PRODUCTION VIA VECTOR BOSON FUSION“. Modern Physics Letters A 23, Nr. 24 (10.08.2008): 1961–73. http://dx.doi.org/10.1142/s0217732308028181.
Der volle Inhalt der QuelleBUTENSCHOEN, MATHIAS, und BERND A. KNIEHL. „NEXT-TO-LEADING ORDER TESTS OF NON-RELATIVISTIC-QCD FACTORIZATION WITH J/ψ YIELD AND POLARIZATION“. Modern Physics Letters A 28, Nr. 09 (21.03.2013): 1350027. http://dx.doi.org/10.1142/s0217732313500272.
Der volle Inhalt der QuelleBrandenburg, A., S. Dittmaier, P. Uwer und S. Weinzierl. „Top quark pair + jet production at next-to-leading order: NLO QCD corrections to“. Nuclear Physics B - Proceedings Supplements 135 (Oktober 2004): 71–75. http://dx.doi.org/10.1016/j.nuclphysbps.2004.09.038.
Der volle Inhalt der QuelleOgul, Hasan, Kamuran Dilsiz, Emrah Tiras, Ping Tan, Yasar Onel und Jane Nachtman. „High Order QCD Predictions for Inclusive Production ofWBosons inppCollisions ats=13 TeV“. Advances in High Energy Physics 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/7865689.
Der volle Inhalt der QuelleGnech, Alex, Jordy de Vries, Sachin Shain und Michele Viviani. „Electric dipole moment of light nuclei in chiral effective field theory“. EPJ Web of Conferences 258 (2022): 06007. http://dx.doi.org/10.1051/epjconf/202225806007.
Der volle Inhalt der QuelleDissertationen zum Thema "Next-to-leading order (NLO)"
RE, EMANUELE. „Next - to - leading order qcd corrections to shower Monte Carlo event generators: single vector- boson and single- top hadroproduction“. Doctoral thesis, Università degli Studi di Milano-Bicocca, 2009. http://hdl.handle.net/10281/7455.
Der volle Inhalt der QuelleBai, Dongyun. „Study of additional radiation in the initial-state-radiation processes e⁺e⁻ → µ⁺µ⁻γ and e⁺e⁻ → π⁺π⁻γ in the BABAR experiment“. Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASP087.
Der volle Inhalt der QuelleThis thesis presents a dedicated study of additional radiation in e⁺e⁻ → µ⁺µ⁻γ and e⁺e⁻ → π⁺π⁻γ initial-state-radiation (ISR) events. This study is based on the data collected by the BABAR detector, corresponding to an integrated luminosity of 424.2 fb⁻¹ and 43.9 fb⁻¹ at and below the Y(4S) resonance, respectively. Two-body ISR events are selected by requiring the ISR photon energy in the center-of-mass frame E^*_ γISR be greater than 4 GeV and the laboratory polar angle in the range 0.35-2.45 rad, and exactly two opposite charged tracks, each with transverse momentum p_T > 0,1 GeV and within the angular range 0.40-2.45 rad. In the events with two ISR photon candidates, the ISR photon is chosen to be that with the higher E^*_ γISR. Kinematic fits of next-to-leading order (NLO) and next-to-next-to-leading order (NNLO) are performed to probe the radiation of one or two photons respectively in the initial and final states in addition to the ISR photon. Several boosted decision trees (BDTs) based on the multivariate technique are performed to (1) determine the normalization factors for simulated multihadron backgrounds from qqbar and 3π processes, (2) separate dimuon and dipion signals from backgrounds in a two-dimensional χ² plane of kinematic fits with a small-or large-angle additional photon, and (3) suppress background contributions in dipion samples with two additional photons. New results are presented for processes at NLO following the previous BABAR analysis, comparing with predictions from PHOKHARA and AFKQED Monte Carlo (MC) generators. The comparison reveals discrepancies in the one-photon rates and the PHOKHARA generator. The observed disagreement has a negligible effect on the BABAR measurement of the dipion cross section, but it could affect other ISR-based measurements more significantly. To further investigate the results from the NLO analysis, a 0C analysis which stands for zero constraint kinematic reconstruction of the full muon sample is performed and validates the observed disagreement. Substantial NNLO contributions are studied and quantified in both dimuon and dipion processes. Implications of these results for other experiments are briefly discussed and compared
ALIOLI, SIMONE. „Matching next-to-leading-order QCD calculations with shower Monte Carlo Simulations: single vector boson and higgs boson productions in powheg“. Doctoral thesis, Università degli Studi di Milano-Bicocca, 2009. http://hdl.handle.net/10281/7381.
Der volle Inhalt der QuelleGAVARDI, ALESSANDRO. „Next-to-next-to-leading order predictions for diboson production in hadronic scattering combined with parton showers“. Doctoral thesis, Università degli Studi di Milano-Bicocca, 2023. https://hdl.handle.net/10281/402370.
Der volle Inhalt der QuelleIn this work, I present the implementations of two processes of electroweak (EW) boson pair production from hadronic scattering within two different Monte Carlo event generators at next-to-next-to-leading order (NNLO) in quantum chromodynamics (QCD) combined with parton showers (PS). In the first part of the work, I discuss the implementation of the process of production of two same-flavor opposite-charge pairs of massless leptons from proton-proton scattering within the Geneva Monte Carlo event generator. After briefly introducing the Geneva method, I provide a detailed description of two of its newly-implemented features. After passing the events through the Pythia8 parton shower, I finally show several distributions of phenomenological interest and compare them with the data from the ATLAS and CMS experiments at the Large Hadron Collider (LHC). The Geneva event generator provides a framework for matching the NNLO calculation with the next-to-next-to-leading logarithmic prime (NNLL') resummation of the zero-jettiness and next-to-leading logarithmic (NLL) resummation of the one-jettiness. Since the contribution from the resummation is only differential in the N-jettiness parameter, it can be used for generating events only after providing its dependence on the full radiation phase space. The functions used for this purpose are called splitting functions and must be normalized so as not to spoil the accuracy of the resummation. In this work, I present a way of normalizing them on the fly, which provides better stability to the Monte Carlo integration. However, such a method requires the analytic computation of several phase-space boundaries, which depend on the mappings used for projecting the configurations with N+1 final-state partons onto those with N final-state partons. After describing all the mappings currently available in Geneva, I present a detailed calculation of the normalization of the corresponding splitting functions. I then discuss the next-to-leading order (NLO) subtraction of the infrared QCD singularities for any process of production of a color singlet. Since Geneva requires the on-the-fly Monte Carlo integration of the subtracted real amplitudes, I show a way to optimize the efficiency of the integration, which can be particularly useful for processes where the evaluation of the real matrix elements is computationally demanding. In the second part of the work, I discuss the implementation of the process of production of a photon pair from a proton-proton scattering within the Powheg Box + MiNNLOPS Monte Carlo event generator. Such a process requires a dedicated treatment since it is plagued by quantum electrodynamics (QED) divergences in the limit where any photons become collinear to a quark. After briefly introducing the Powheg Box event generator and the MiNNLOPS method, I present the dedicated tools devised for this calculation. I begin by describing a generic way to deal with any process with a divergent Born cross section in the Powheg Box event generator without applying any generation-level cuts. I then present a mapping that prevents QED-finite configurations with one final-state parton from being projected to singular configurations with no final-state partons. Finally, I discuss several modifications to the original version of the MiNNLOPS method aimed at reducing the size of spurious contributions beyond NNLO. After passing the events through the Pythia8 parton shower, I conclude by showing several distributions of phenomenological interest and comparing them with the most recent LHC data from the ATLAS experiment.
Bücher zum Thema "Next-to-leading order (NLO)"
Johansen, Bruce, und Adebowale Akande, Hrsg. Nationalism: Past as Prologue. Nova Science Publishers, Inc., 2021. http://dx.doi.org/10.52305/aief3847.
Der volle Inhalt der QuelleBuchteile zum Thema "Next-to-leading order (NLO)"
Gams, Matjaz, und Matej Ozek. „Use of Data Mining Techniques for Process Analysis on Small Databases“. In Dynamic and Advanced Data Mining for Progressing Technological Development, 422–36. IGI Global, 2010. http://dx.doi.org/10.4018/978-1-60566-908-3.ch017.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Next-to-leading order (NLO)"
Safronov, Anton, Carlo Flore, Daniel Kikola, Aleksander Kusina, Jean-Philippe Lansberg, Olivier Mattelaer und Hua-Sheng Shao. „A tool for automated perturbative cross section computations of asymmetric hadronic collisions at next-to-leading order using the $\texttt{MadGraph5_aMC@NLO}$ framework“. In 41st International Conference on High Energy physics. Trieste, Italy: Sissa Medialab, 2022. http://dx.doi.org/10.22323/1.414.0494.
Der volle Inhalt der Quelle