Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Nitrogen budgets“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Nitrogen budgets" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Nitrogen budgets"
Galloway, J. N., und H. Rodhe. „Regional atmospheric budgets of S and N fluxes: how well can they be quantified?“ Proceedings of the Royal Society of Edinburgh. Section B. Biological Sciences 97 (1990): 61–80. http://dx.doi.org/10.1017/s0269727000005297.
Der volle Inhalt der QuelleLöhmus, Krista, Valdo Kuusemets, Mari Ivask, Sille Teiter, Jürgen Augustin und Ülo Mander. „Budgets of nitrogen fluxes in riparian grey alder forests.“ River Systems 13, Nr. 3-4 (01.01.2002): 321–32. http://dx.doi.org/10.1127/lr/13/2002/321.
Der volle Inhalt der QuelleCarey, Anne E., W. Berry Lyons, Jean-Claude Bonzongo und John C. Lehrter. „Nitrogen budget in the Upper Mississippi River watershed“. Environmental and Engineering Geoscience 7, Nr. 3 (01.08.2001): 251–65. http://dx.doi.org/10.2113/gseegeosci.7.3.251.
Der volle Inhalt der QuellePrasad, Rishi, und George Hochmuth. „Understanding Nitrogen Transformations and Cycling for Sweet Corn Production in Sandy Soils“. EDIS 2015, Nr. 8 (05.11.2015): 4. http://dx.doi.org/10.32473/edis-ss643-2015.
Der volle Inhalt der QuelleGalicka, Wanda, und Tadeusz Penczak. „Total nitrogen and phosphorus budgets in the lowland Sulejow Reservoir“. Archiv für Hydrobiologie 117, Nr. 2 (20.12.1989): 177–90. http://dx.doi.org/10.1127/archiv-hydrobiol/117/1989/177.
Der volle Inhalt der QuelleReimer, Marie, Kurt Möller und Tobias Edward Hartmann. „Meta-analysis of nutrient budgets in organic farms across Europe“. Organic Agriculture 10, S1 (26.05.2020): 65–77. http://dx.doi.org/10.1007/s13165-020-00300-8.
Der volle Inhalt der QuelleKlages, Susanne, Claudia Heidecke, Bernhard Osterburg, John Bailey, Irina Calciu, Clare Casey, Tommy Dalgaard et al. „Nitrogen Surplus—A Unified Indicator for Water Pollution in Europe?“ Water 12, Nr. 4 (22.04.2020): 1197. http://dx.doi.org/10.3390/w12041197.
Der volle Inhalt der QuelleCollos, Y. „Nitrogen budgets and dissolved organic matter cycling“. Marine Ecology Progress Series 90 (1992): 201–6. http://dx.doi.org/10.3354/meps090201.
Der volle Inhalt der QuelleMatsumura, Tsuyoshi, Takashi Ishimaru und Tetsuo Yanagi. „Nitrogen and Phosphorus Budgets in Tokyo Bay.“ Oceanography in Japan 11, Nr. 6 (2002): 613–30. http://dx.doi.org/10.5928/kaiyou.11.613.
Der volle Inhalt der QuelleJohnson, Dale W., und John Turner. „Nitrogen budgets of forest ecosystems: A review“. Forest Ecology and Management 318 (April 2014): 370–79. http://dx.doi.org/10.1016/j.foreco.2013.08.028.
Der volle Inhalt der QuelleDissertationen zum Thema "Nitrogen budgets"
Watson, Christine A. „Nitrogen budgets in pluricompartmental systems“. Thesis, University of Aberdeen, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296512.
Der volle Inhalt der QuelleEriksson, Hägg Hanna. „Nitrogen land-sea fluxes in the Baltic Sea catchment : Empirical relationships and budgets“. Doctoral thesis, Stockholms universitet, Institutionen för tillämpad miljövetenskap (ITM), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-32493.
Der volle Inhalt der QuelleAt the time of doctoral dissertation the following publications were unpublished and had a status as follows: Paper 2: Manuscript. Paper 4: Manuscript
Halpop, John W. „Nitrogen and Energy Budgets of Production Ewes on Summer Range in Southwestern Utah“. DigitalCommons@USU, 1988. https://digitalcommons.usu.edu/etd/4086.
Der volle Inhalt der QuelleJames, Andrew Gordon. „The feeding ecology of and carbon and nitrogen budgets for Engraulis capensis in the southern Benguela ecosystem“. Doctoral thesis, University of Cape Town, 1988. http://hdl.handle.net/11427/8409.
Der volle Inhalt der QuelleThe two main schools of thought regarding the diets of intermediate microphagous clupeids are: A) that they are herbivorous and B) that they are omnivorous, but consume mainly zooplankton. The former view has been employed to explain their abundance in upwelling areas, since their purported ability to efficiently utilise the primary producers shortens the pelagic food chain to 1 or 2 links. The literature concerning the trophic ecology of some commercially important clupeids is reviewed and it is concluded that few are true phytophagists. Most are omnivorous and derive the bulk of their energy from zooplankton. Results indicating that these fish are herbivorous are largely due to inadequate sampling strategies and analytical techniques. The results of field work show that Engraulis capensis feeds selectively upon meso- and macro-zooplankton. Laboratory experiments supported these findings. Prey are selected on the basis of size and particulate feeding is the dominant mode of intake when the' fish are presented with a mixed size assemblage of prey. Engraulis capensis cannot filter feed on particles less than 0.200mm maximum dimension, and there is a threshold size of approximately 0.700mm when feeding behaviour switches from filter to particulate feeding. Particulate feeding produced faster clearance rates than filtering, and the Cape anchovy feeds at maximum efficiency over most of their prey size spectrum.
van, der Lingen Carl David. „The Feeding ecology of, and carbon and nitrogen budgets for, sardine sardinops sagax in the Southern Benguela upwelling ecosystem“. Doctoral thesis, University of Cape Town, 1999. http://hdl.handle.net/11427/17510.
Der volle Inhalt der QuelleCombined laboratory and field studies were employed to examine the feeding ecology of sardine Sardinops sagax in order to evaluate conflicting hypotheses regarding the trophic position of clupeoids in upwelling ecosystems, and to compare the trophodynamics of sardine with those of the co-occurring anchovy Engraulis capensis. Carbon and nitrogen budget models constructed using data from these studies were used to quantify the effect of particular food environments upon sardine growth. Sardinops sagax is primarily a filter-feeder, with food particles <1230μm total length eliciting a filtering response while larger particles elicit particulate-feeding at low concentrations and filter-feeding at high concentrations. This species is able to retain cells as small as 13μm, feeds at near-maximum efficiency when filterfeeding, and displays size-selectivity during particulate-feeding. Significant linear relationships between respiration rate and swimming speed obtained for sardine demonstrate that filter-feeding is the most energetically cheap feeding mode. Although omnivorous, sardine absorbs carbon and nitrogen more efficiently from zooplankton than from phytoplankton. Gastric evacuation follows an exponential pattern in sardine, and is influenced by food type; phytoplankton is evacuated faster than zooplankton. Feeding periodicity in sardine is size dependent; small fish show a feeding peak at, or around, sunset whereas larger fish appear to feed continuously. Estimates of daily ration range between 0.99 to 7.58% wet body mass.d-¹, depending on fish size and food type. Sardine stomach contents are numerically dominated by small particles, principally dinoflagellate phytoplankton, but the majority of the sardine's dietary carbon is derived from zooplankton, principally small calanoid and cyclopoid copepods. The budget models indicate that sardine is capable of positive growth under most of the trophic conditions it is likely to encounter in the southern Benguela upwelling system. The classical hypothesis that the high abundance of clupeoids in upwelling ecosystems results from their phytophagy is rejected; like anchovy, sardine are primarily zoophagous. However, these two species are trophodynamically distinct and show resource partitioning on the basis of prey size; sardine consume small zooplankton whilst anchovy consume large zooplankton. This difference is likely to contribute to regime shifts observed between these two species.
Randall, Benjamin. „Characterisation and quantification of the fluxes of particulate and dissolved nitrogen in the unicellular diazotroph crocosphaera watsonii : towards a closed nitrogen budget“. Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS685.
Der volle Inhalt der QuelleDiazotrophy exists as a source of fixed N in the ocean, affecting processes like the marine food web. Important fluxes of the dissolved N phase, which inform the overall N budgets of individual diazotrophs, are poorly understood. This is especially true of recently discovered diazotrophs which may not function under pre-established paradigms. One such diazotroph is Crocosphaera watsonii, which is found widespread throughout sub-tropical oceans. Here we characterise N fluxes consequent to diazotrophy for Crocosphaera, including fluxes of NO3-, NH4+, and dissolved organic N (DON). We also aim to use our results to assess the accuracy of commonly used biological N2 fixation assays. We first assessed the use of NO3- by Crocosphaera. To do this, batch cultures of Crocosphaera were grown long term with NO3-, measuring uptake of NO3- uptake its effect on diazotrophy, culture growth and other important physiological parameters. We found little uptake with no effect on the assessed parameters, including diazotrophy. We next focussed on flux of DON and NH4+ in continuous cultures regulated for conditions such as temperature, light, and pH. We targeted light availability as an important parameter. Between culture conditions of sub-saturating (SSL) and saturating light (SL), we found an increase in N acquisition, C acquisition and cell growth rate in the SL condition. Furthermore, we found an uptake of DON over a 24h period, with greater uptake in the SSL scenario (42% v.s. 7%). There was greater flux of NH4+ into the medium in the SSL. Using an isotopic approach, we found 2.5-3.5% of recently fixed N was exuded 24h. Our assessment of the accuracy of methodology found that 15N2 incubations underestimated N2 fixation while the acetylene reduction assay overestimated. Overall, 15N2 incubations were more reliable when factoring in fluxes of dissolved N. Our findings represent new perspectives into the importance of fluxes of dissolved N to N budgets of Crocosphaera watsonii
Bristow, Corben Emerson. „Experimental freshwater cage aquaculture: Short term effects on carbon, nitrogen and phosphorus budgets and the metabolism of a boreal shield lake“. Thesis, University of Ottawa (Canada), 2006. http://hdl.handle.net/10393/27114.
Der volle Inhalt der QuelleMichori, Peter K. „Nitrogen budget under coffee“. Thesis, University of Reading, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333405.
Der volle Inhalt der QuelleLernbecher, Vincent. „Swedish Nitrogen Flows : A national budget of anthropogenically induced reactive nitrogen“. Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289176.
Der volle Inhalt der QuelleKvävgas i form av N2 finns i överflöd i jordens atmosfär. Cirka 78% av luften är i själva verket N2. För att levande organismer ska kunna använda det atmosfäriska kvävet måste den först brytas ned och bindas till antingen väte, kol eller syre. I sin reaktiva form fungerar elementet som en grundläggande byggsten för alla levande varelser. Den naturliga processen som förvandlar oanvändbart atmosfäriskt kväve till dess reaktiva former kallas kvävefixering och utförs av bakterier. I ekosystemet avgör därmed tillgängligheten av reaktivt kväve vegetationens tillväxt och är därmed en begränsande faktor för jordbruket. Denna begränsning upphörde med uppfinningen av industriell kvävefixering i form av Haber-Bosch processen där ammoniak utvinns ur luften. Sedan dess har miljontals ton av reaktivt kväve införts till den naturliga kvävecykeln och orsakat störningar med allvarliga konsekvenser. I Sverige började arbetet med att reducera överskottet av reaktivt kväve på allvar under 1980-talet då näringsinnehållet i Östersjön redan hade överskridit hållbara nivåer. Sedan dess har ny lagstiftning som behandlar frågan införts både på nationell nivå och på EU- nivå. Insatserna har påverkat minskningen av kväveöverskottet, men många belastningsgränser överskrids fortfarande. För att samordna strategier och lagstiftning kring den komplexa kvävecykeln och ytterligare begränsa miljöbelastningen krävs en mer integrerad, holistisk strategi och ett gemensamt ramverk. Denna studie skapades med detta i åtanke och med målet att öka medvetenheten om kvävets belastning på miljön. I studien kvantifierades mänskligt inducerade källor och mekanismer associerade med kväve och illustrerades i flera diagram konstruerade med en materialflödesanalys (MFA) metod. Det svenska samhället är indelat i fyra sektorer: jordbruk, industri, konsumtion och avfallshantering. De resulterande kväveflödena används sedan för att lyfta fram intressanta områden och skapa en översiktsbild. Resultaten visar betydande flöden som huvudsakligen härrör från livsmedelssystemet, med början i jordbruksanvändning av mineral- och organisk gödselmedel. Utsläpp av ammoniak till luft från djurhållning samt läckage av kväve till vattendrag utgör de största förlusterna i jordbrukssektorn. Den drivande kraften bakom det stora inflödet av gödselmedel och orsaken till jordbruksförlusterna är först och främst hushållens konsumtionsmönster. Utsläpp av kväveoxider från trafik och industriprocesser utgör även en stor del den totala kvävebelastningen. Återvinningsgraden av näringsämnen som slutligen hamnar i avfallssektorn är relativt låg och majoriteten av kvävet denitrifieras i reningsverk. Slutsatsen är att det nuvarande tillståndet för antropogent kväveflöde i Sverige är linjärt och att nytt kväve kontinuerligt måste tillföras till systemet.
Batson, Jacqulyn A. „Denitrification and a Nitrogen Budget of Created Riparian Wetlands“. The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1284968767.
Der volle Inhalt der QuelleBücher zum Thema "Nitrogen budgets"
United States. Environmental Protection Agency. Office of Air and Radiation., Hrsg. NOx budget trading program: 2005 program compliance and environmental results. [Washington, D.C.]: United States Environmental Protection Agency, Office of Air and Radiation, 2005.
Den vollen Inhalt der Quelle findenUnited States. Environmental Protection Agency. Office of Atmospheric Programs, Hrsg. Evaluating the ozone control programs in the eastern United States: Focus on the NOx Budget Trading Program, 2004. Washington, DC: U.S. Environmental Protection Agency, Office of Air and Radiation, Office of Air Quality Planning and Standards, Office of Atmospheric Programs, 2005.
Den vollen Inhalt der Quelle findenEllen, Baldridge, United States. Environmental Protection Agency., United States. Environmental Protection Agency. Office of Air and Radiation., United States. Environmental Protection Agency. Office of Air Quality Planning and Standards. und United States. Environmental Protection Agency. Office of Atmospheric Programs., Hrsg. Evaluating ozone control programs in the eastern United States: Focus on the NOX budget trading program, 2004. Washington, D.C: United States Environmental Protection Agency, 2004.
Den vollen Inhalt der Quelle findenMoldan, Filip, Sara Jutterström, Johanna Stadmark, Anu Akujärvi, Martin Forsius, Maria Holmberg, Kari Austnes, Heleen de Wit und Jesper Bak. Policy Brief: Nitrogen budgets and the link to carbon sequestration in the Nordic forests. Nordic Council of Ministers, 2021. http://dx.doi.org/10.6027/temanord2021-554.
Der volle Inhalt der QuelleDerwent, R. G. The Influence of Physical and Chemical Processes on the Fluxes and Budgets of Atmospheric Nitrogen Compounds. AEA Technology Plc, 1988.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Nitrogen budgets"
Legg, J. O., und J. J. Meisinger. „Soil Nitrogen Budgets“. In Nitrogen in Agricultural Soils, 503–66. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2015. http://dx.doi.org/10.2134/agronmonogr22.c14.
Der volle Inhalt der QuelleMeisinger, J. J., F. J. Calderón und D. S. Jenkinson. „Soil Nitrogen Budgets“. In Nitrogen in Agricultural Systems, 505–62. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2015. http://dx.doi.org/10.2134/agronmonogr49.c13.
Der volle Inhalt der QuelleGu, Baojing, und Xiuming Zhang. „Reactive Nitrogen Budgets in China“. In Atmospheric Reactive Nitrogen in China, 87–109. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8514-8_5.
Der volle Inhalt der QuelleToetz, Dale W. „Nitrogen Budgets of Great Plains Impoundments“. In Man-Made Lakes: Their Problems and Environmental Effects, 567–71. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm017p0567.
Der volle Inhalt der QuelleMeisinger, J. J., und G. W. Randall. „Estimating Nitrogen Budgets for Soil-Crop Systems“. In Managing Nitrogen for Groundwater Quality and Farm Profitability, 85–124. Madison, WI, USA: Soil Science Society of America, 2015. http://dx.doi.org/10.2136/1991.managingnitrogen.c5.
Der volle Inhalt der QuelleHolland, Elisabeth A., Frank J. Dentener, Bobby H. Braswell und James M. Sulzman. „Contemporary and pre-industrial global reactive nitrogen budgets“. In New Perspectives on Nitrogen Cycling in the Temperate and Tropical Americas, 7–43. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4645-6_2.
Der volle Inhalt der QuelleRaven, John A., Linda L. Handley und Mitchell Andrews. „Optimizing Carbon-Nitrogen Budgets: Perspectives for Crop Improvement“. In Advances in Photosynthesis and Respiration, 265–74. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/0-306-48138-3_16.
Der volle Inhalt der QuelleJohnson, D. W., R. B. Susfalk, T. G. Caldwell, J. D. Murphy, W. W. Miller und R. F. Walker. „Fire Effects on Carbon And Nitrogen Budgets in Forests“. In Biogeochemical Investigations of Terrestrial, Freshwater, and Wetland Ecosystems across the Globe, 263–75. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-007-0952-2_19.
Der volle Inhalt der QuelleXing, G. X., und Z. L. Zhu. „Regional nitrogen budgets for China and its major watersheds“. In The Nitrogen Cycle at Regional to Global Scales, 405–27. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-3405-9_13.
Der volle Inhalt der QuelleMikkelsen, D. S. „Nitrogen budgets in flooded soils used for rice production“. In Plant and Soil Interfaces and Interactions, 71–97. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3627-0_6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Nitrogen budgets"
Grewal, Damanveer, Rajdeep Dasgupta und James Eguchi. „The Effect of Differentiation via Internal Versus External Magma Oceans on the Carbon and Nitrogen Budgets of Rocky Planets“. In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.880.
Der volle Inhalt der QuelleHan, Chengwei, und Shiguo Xu. „The Nitrogen Budget of DRW in the Northeastern China“. In World Environmental and Water Resources Congress 2009. Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41036(342)258.
Der volle Inhalt der QuelleHongmin Dong, Zhongkai Zhou, Zhiping Zhu, Hongwei Xin und Yongxing Chen. „Carbon and Nitrogen Budget of Commercial Cage-Grown Broilers“. In 2011 Louisville, Kentucky, August 7 - August 10, 2011. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2011. http://dx.doi.org/10.13031/2013.37297.
Der volle Inhalt der QuelleTabeta, Shigeru, und Haruki Yoshimoto. „Investigation of Carbon Budget Around Artificial Upwelling Generator by a Coupled Physical-Biological Model“. In ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2007. http://dx.doi.org/10.1115/omae2007-29653.
Der volle Inhalt der QuelleLarsen, Jack C., und William P. Chu. „The Sensitivity of the SAGE II .94 μm Band Water Vapor Retrievals to Uncertainties in Absorption Line Parameters“. In Optical Remote Sensing. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/ors.1985.wc23.
Der volle Inhalt der QuelleLUCOVSKY, Gerald, David R. LEE, Sunil V. HATTANGADY, Hiro NIIMI, Chris PARKER und John R. HAUSER. „Low-Thermal-Budget Process-Controlled Monolayer Level Incorporation of Nitrogen into Ultra-Thin Gate Dielectric Structures: Applications to MOS Devices“. In 1995 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1995. http://dx.doi.org/10.7567/ssdm.1995.s-i-2-4.
Der volle Inhalt der QuelleBijnen, F. G. C., F. J. M. Harren, J. Reuss und J. H. P. Hackstein. „Gas detector measures parts per trillion: periodic CH4 and H2O release from a single cockroach“. In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/cleo_europe.1994.cwi1.
Der volle Inhalt der QuelleLangford, Andrew O., und Michael H. Proffitt. „Differential Absorption Lidar Measurements of Tropospheric Ozone“. In Laser Applications to Chemical Analysis. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/laca.1994.wc.3.
Der volle Inhalt der QuelleDUBRA, Vytautas. „SOME PECULIARITIES OF SPATIAL DISTRIBUTION OF LAND-BASED INORGANIC NUTRIENTS IN THE COASTAL PART OF THE BALTIC SEA“. In Rural Development 2015. Aleksandras Stulginskis University, 2015. http://dx.doi.org/10.15544/rd.2015.070.
Der volle Inhalt der QuelleKomai, Yukio, Yukio Komai, Mana Sakata, Mana Sakata, Masaki Nakajima, Masaki Nakajima, Sae Tanaka und Sae Tanaka. „RELEASE OF NUTRIENTS FROM BOTTOM SEDIMENTS IN OSAKA BAY, JAPAN IN 2015“. In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.31519/conferencearticle_5b1b937eec5797.84530079.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Nitrogen budgets"
Bloom, Arnold. Final Report: Plant Nitrogen Budgets Under Elevated Carbon Dioxide Levels: Regulations by Nitrogen Absorption and Assimiliation, September 1, 1995 - August 31, 1999. Office of Scientific and Technical Information (OSTI), August 1999. http://dx.doi.org/10.2172/765144.
Der volle Inhalt der QuelleBassiriRad, H., und V. Gutschick. Plant nitrogen budget under elevated carbon dioxide level: Regulation by nitrogen absorption and assimilation. Progress report, October 1, 1995--July 31, 1996. Office of Scientific and Technical Information (OSTI), September 1998. http://dx.doi.org/10.2172/656508.
Der volle Inhalt der QuelleBassiriRad, Hormoz, und Vincent Gutschick. Closeout technical report for DOE award number DE-FG02-97ER62332 [Nitrogen budget under elevated CO{sub 2} levels: regulation by absorption and assimilation]. Office of Scientific and Technical Information (OSTI), Oktober 2001. http://dx.doi.org/10.2172/808011.
Der volle Inhalt der QuelleWater budget for and nitrogen loads to Northeast Creek, Bar Harbor, Maine. US Geological Survey, 2002. http://dx.doi.org/10.3133/wri024000.
Der volle Inhalt der Quelle