Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Nitrogen Fixation.

Zeitschriftenartikel zum Thema „Nitrogen Fixation“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Nitrogen Fixation" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Nagiev, T. M., N. I. Ali-zadeh, L. M. Gasanova, I. T. Nagieva, Ch A. Mustafaeva, N. N. Malikova, A. A. Abdullaeva, and E. S. Bakhramov. "NITROGEN FIXATION AT CONJUGATED OXIDATION." Azerbaijan Chemical Journal, no. 2 (2018): 6–10. http://dx.doi.org/10.32737/0005-2531-2018-2-6-10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

O'GARA, FERGAL. "Nitrogen Fixation." Biochemical Society Transactions 13, no. 3 (June 1, 1985): 639. http://dx.doi.org/10.1042/bst0130639a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wen-Yue Hsiung. "Nitrogen Fixation." Forest Ecology and Management 10, no. 4 (May 1985): 348–50. http://dx.doi.org/10.1016/0378-1127(85)90127-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Becker, James Y., and Shlomit Avraham (Tsarfaty). "Nitrogen fixation." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 280, no. 1 (February 1990): 119–27. http://dx.doi.org/10.1016/0022-0728(90)87088-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Becker, James Y., Shlomit Avraham (Tsarfaty), and Barry Posin. "Nitrogen fixation." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 230, no. 1-2 (August 1987): 143–53. http://dx.doi.org/10.1016/0022-0728(87)80138-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Becker, James Y., and Barry Posin. "Nitrogen fixation." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 250, no. 2 (August 1988): 385–97. http://dx.doi.org/10.1016/0022-0728(88)85178-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Davis, Lawrence C. "Fundamentals of nitrogen fixation an introduction to nitrogen fixation." Trends in Biochemical Sciences 12 (January 1987): 451–52. http://dx.doi.org/10.1016/0968-0004(87)90216-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Smith, B. E. "Fertilizer fixation nitrogen fixation in plants." Trends in Biochemical Sciences 12 (January 1987): 36. http://dx.doi.org/10.1016/0968-0004(87)90018-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sprent, J. I., and M. Alexander. "Biological Nitrogen Fixation." Journal of Applied Ecology 22, no. 2 (August 1985): 601. http://dx.doi.org/10.2307/2403193.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Mylona, Panagiota, Katharina Pawlowski, and Ton Bisseling. "Symbiotic Nitrogen Fixation." Plant Cell 7, no. 7 (July 1995): 869. http://dx.doi.org/10.2307/3870043.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Burris, R. H., and G. P. Roberts. "Biological Nitrogen Fixation." Annual Review of Nutrition 13, no. 1 (July 1993): 317–35. http://dx.doi.org/10.1146/annurev.nu.13.070193.001533.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Lehnert, Nicolai, Hai T. Dong, Jill B. Harland, Andrew P. Hunt, and Corey J. White. "Reversing nitrogen fixation." Nature Reviews Chemistry 2, no. 10 (September 27, 2018): 278–89. http://dx.doi.org/10.1038/s41570-018-0041-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Wiseman, Alan, Gordon C. Hartman, and Barry E. Smith. "Biological nitrogen fixation." Journal of Biological Education 19, no. 1 (March 1985): 24–30. http://dx.doi.org/10.1080/00219266.1985.9654683.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

MULLIN, BETH C. "Symbiotic Nitrogen Fixation." Soil Science 160, no. 5 (November 1995): 385–86. http://dx.doi.org/10.1097/00010694-199511000-00009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Sprent, J. "Prokaryotic nitrogen fixation." Applied Soil Ecology 16, no. 2 (February 2001): 193–94. http://dx.doi.org/10.1016/s0929-1393(00)00125-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Gallon, John R. "Nitrogen without fixation." Trends in Microbiology 5, no. 10 (October 1997): 419. http://dx.doi.org/10.1016/s0966-842x(97)89761-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

UÇAR, Rıdvan. "Biological Nitrogen Fixation in Legumes: An Overview." MAS Journal of Applied Sciences 8, no. 2 (May 13, 2023): 213–21. https://doi.org/10.5281/zenodo.7931974.

Der volle Inhalt der Quelle
Annotation:
Nitrogen is an essential nutrient for plants and is often a limiting factor in crop growth. Large quantities of fertiliser are often applied to crops which is an energy-consuming, expensive and pollution producing procedure from production to application. Biological nitrogen fixation is a solution to reduce nitrogen-related problems in agriculture. Biological nitrogen fixation, the reduction of dinitrogen (N2) to ammonia, is an essential reaction in the global nitrogen cycle. Many legumes have evolved to establish a symbiosis with nitrogen-fixing soil-bacteria collectively known as Rhizobia. More than 98 species of symbiotic nitrogen-fixing rhizobia exist in 14 taxa in association with legumes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Smith, Barry E. "Nitrogen and diversity biological nitrogen fixation." Trends in Biochemical Sciences 18, no. 3 (March 1993): 109–10. http://dx.doi.org/10.1016/0968-0004(93)90165-j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

McFarland, Mel A., and Dale W. Toetz. "Nitrogen fixation (acetylene reduction) in Lake Hefner, Oklahoma." Archiv für Hydrobiologie 114, no. 2 (December 14, 1988): 213–30. http://dx.doi.org/10.1127/archiv-hydrobiol/114/1988/213.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Yu, Tong, and Qianlai Zhuang. "Modeling biological nitrogen fixation in global natural terrestrial ecosystems." Biogeosciences 17, no. 13 (July 13, 2020): 3643–57. http://dx.doi.org/10.5194/bg-17-3643-2020.

Der volle Inhalt der Quelle
Annotation:
Abstract. Biological nitrogen fixation plays an important role in the global nitrogen cycle. However, the fixation rate has been usually measured or estimated at a particular observational site. To quantify the fixation amount at the global scale, process-based models are needed. This study develops a biological nitrogen fixation model to quantitatively estimate the nitrogen fixation rate by plants in a natural environment. The revised nitrogen module better simulates the nitrogen cycle in comparison with our previous model that has not considered the fixation effects. The new model estimates that tropical forests have the highest fixation rate among all ecosystem types, which decreases from the Equator to the polar region. The estimated nitrogen fixation in global terrestrial ecosystems is 61.5 Tg N yr−1 with a range of 19.8–107.9 Tg N yr−1 in the 1990s. Our estimates are relatively low compared to some early estimates using empirical approaches but comparable to more recent estimates that involve more detailed processes in their modeling. Furthermore, the contribution of nitrogen made by biological nitrogen fixation depends on ecosystem type and climatic conditions. This study highlights that there are relatively large effects of biological nitrogen fixation on ecosystem nitrogen cycling. and the large uncertainty of the estimation calls for more comprehensive understanding of biological nitrogen fixation. More direct observational data for different ecosystems are in need to improve future quantification of fixation and its impacts.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Arango, Clay Porter, Leslie Anne Riley, Jennifer Leah Tank, and Robert Ogden Hall,. "Herbivory by an invasive snail increases nitrogen fixation in a nitrogen-limited stream." Canadian Journal of Fisheries and Aquatic Sciences 66, no. 8 (August 2009): 1309–17. http://dx.doi.org/10.1139/f09-079.

Der volle Inhalt der Quelle
Annotation:
Despite anthropogenic nitrogen contributions, nitrogen fixation contributes half of biosphere inputs but has rarely been quantified in streams. Herbivory controls algal biomass and productivity in streams, and we hypothesized that herbivory could also control nitrogen fixation. We released periphyton from herbivory in nitrogen-limited Polecat Creek, Wyoming, where heavy grazing by the invasive New Zealand mudsnail ( Potamopyrgus antipodarum ) dominates nitrogen cycling. One and two weeks after releasing periphyton, we found higher rates of nitrogen fixation on heavily grazed rocks (two-way analysis of variance (ANOVA), p = 0.012). Time elapsed after snail manipulation had no effect (two-way ANOVA, p = 0.24). Grazing changed periphyton composition by reducing the proportion of green algae and increasing the proportion of nitrogen-fixing diatoms (multivariate ANOVA, p = 0.001). Nitrogen fixation rates increased disproportionately to nitrogen-fixing algal cells, indicating that snails increased nitrogenase efficiency, probably by improving light and (or) nutrient availability to nitrogen fixers. We incorporated our nitrogen fixation rates into a published nitrogen budget for Polecat Creek and found that nitrogen flux into the periphyton was 50% higher when we included nitrogen fixation. Herbivory can increase nitrogen fixation in streams, and future studies should measure nitrogen fixation for a more thorough understanding of stream nitrogen cycling.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Nadkernychna, O. V., S. M. Minenok, R. L. Boguslavsky, and O. Yu Leonov. "ASSESSMENT OF WINTER WHEAT VARIETIES BY THEIR ASSOCIATIVE NITROGEN FIXATION ABILITY." Agriciltural microbiology 17 (October 1, 2013): 67–78. http://dx.doi.org/10.35868/1997-3004.17.67-78.

Der volle Inhalt der Quelle
Annotation:
The paper depicts the results of intervarietal variability study of winter wheat plants in controlled environment with varieties Albatross Odessa, Kiriya, Zolotokolosa, Lybid and Odeska 267 by their associative nitrogen fixation ability. The 5.6 – 13.7 – fold divergence between the varieties by given index was revealed. It was shown that intravarietal variability of winter wheat plants by their ability to stimulate associative nitrogen fixation occurs along with the intervarietal one. Populations intensity of a different genotypes characterized by high nitrogen fixation activity in root zone, stipulates high nitrogen fixation potential of variety. Among the studied varieties Zolotokolosa was selected as genetically homogeneous variety with high nitrogen fixation potential of rhizosphere microorganisms that can be recommended for use in breeding as a source with high capacity for associative nitrogen fixation. New winter wheat varieties with high nitrogen fixation potential can fully develop using not only mineral nitrogen fertilizers, but also interacting with associative nitrogen fixation microorganisms should partially replace mineral nitrogen with biological that, in turn, will guarantee a high yield quality and conservation of agricultural landscapes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Takahashi, Mikio, and Yatsuka Saijo. "Nitrogen metabolism in Lake Kizaki, Japan V. The role of nitrogen fixation in nitrogen requirement of phytoplankton." Archiv für Hydrobiologie 112, no. 1 (March 24, 1988): 43–54. http://dx.doi.org/10.1127/archiv-hydrobiol/112/1988/43.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Wang, Qianru, Yeqin Guan, Jianping Guo, and Ping Chen. "Hydrides mediate nitrogen fixation." Cell Reports Physical Science 3, no. 3 (March 2022): 100779. http://dx.doi.org/10.1016/j.xcrp.2022.100779.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Jayasankari, N., and S. Shanmugasundaram. "Nitrogen fixation byNostoc strains." Proceedings / Indian Academy of Sciences 94, no. 1 (March 1985): 59–64. http://dx.doi.org/10.1007/bf03053107.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Saha, U., and M. Sen. "Nitrogen fixation byCandida tropicalis." Proceedings / Indian Academy of Sciences 100, no. 5 (October 1990): 343–52. http://dx.doi.org/10.1007/bf03053458.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Jenkins, Michael B. "Nitrogen Fixation, 3rd Edition." Journal of Environmental Quality 29, no. 6 (November 2000): 2047–48. http://dx.doi.org/10.2134/jeq2000.00472425002900060047x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Miller, Lynn. "Peloponnesia and Nitrogen Fixation." Nature Biotechnology 6, no. 7 (July 1988): 841. http://dx.doi.org/10.1038/nbt0788-841a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Rabinovich, Daniel. "Nitrogen Fixation before Haber." Chemistry International 40, no. 3 (July 1, 2018): 3. http://dx.doi.org/10.1515/ci-2018-0302.

Der volle Inhalt der Quelle
Annotation:
Abstract Much has been written about the German chemist Fritz Haber (1868-1934), who embodies at once the best and the worst that chemistry has offered to humankind. He received the Nobel Prize in Chemistry a century ago (1918) “for the synthesis of ammonia from its elements,” an industrial process that led to the pervasive use of nitrogen-based fertilizers in agriculture and enabled the unprecedented population growth experienced in the world ever since. On the other hand, Haber is often considered the “father of chemical warfare” for his role in the development and deployment of chlorine and other poisonous gases during World War I. This note, however, is not about Haber’s legacy but pays tribute instead to two resourceful Norwegians who preceded him in the quest for converting atmospheric nitrogen into more reactive, bioavailable forms of the element.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

VanHook, Annalisa M. "Signaling for nitrogen fixation." Science 360, no. 6385 (April 12, 2018): 166.19–168. http://dx.doi.org/10.1126/science.360.6385.166-s.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Magingo, Francis S. S., and Claudius K. Stumm. "Nitrogen fixation byMethanobacterium formicicum." FEMS Microbiology Letters 81, no. 3 (July 1991): 273–77. http://dx.doi.org/10.1111/j.1574-6968.1991.tb04771.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Vance, Carroll P. "Nitrogen Fixation. John Postgate." Quarterly Review of Biology 75, no. 3 (September 2000): 305. http://dx.doi.org/10.1086/393510.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Elkan, G. H., and GEORGE H. WAGNER. "Symbiotic Nitrogen Fixation Technology." Soil Science 145, no. 6 (June 1988): 464. http://dx.doi.org/10.1097/00010694-198806000-00014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Comyns, Alan E. "Progress in Nitrogen Fixation." Focus on Catalysts 2010, no. 2 (February 2010): 1–2. http://dx.doi.org/10.1016/s1351-4180(10)70001-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

GALLON, J. R. "Nitrogen Fixation in Plants." Biochemical Society Transactions 16, no. 6 (December 1, 1988): 1098. http://dx.doi.org/10.1042/bst0161098a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Gruber, Nicolas. "Elusive marine nitrogen fixation." Proceedings of the National Academy of Sciences 113, no. 16 (April 8, 2016): 4246–48. http://dx.doi.org/10.1073/pnas.1603646113.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Towe;, K. M. "Evolution of Nitrogen Fixation." Science 295, no. 5556 (February 1, 2002): 798–99. http://dx.doi.org/10.1126/science.295.5556.798.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Bazhenova, T. A., and A. E. Shilov. "Nitrogen fixation in solution." Coordination Chemistry Reviews 144 (October 1995): 69–145. http://dx.doi.org/10.1016/0010-8545(95)01139-g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Long, Sharon R. "Nitrogen fixation in plants." Cell 48, no. 6 (March 1987): 912. http://dx.doi.org/10.1016/0092-8674(87)90699-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Ausubel, F. M., B. Hoffman, P. McLean, E. Münck, D. Wink, W. Orme-Johnson, A. Anderson, et al. "Nitrogenase and nitrogen fixation." Journal of Inorganic Biochemistry 36, no. 3-4 (August 1989): 167. http://dx.doi.org/10.1016/0162-0134(89)84068-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Maier, G�nther, Hans Peter Reisenauer, Jochem Henkelmann, and Christine Kliche. "Nitrogen Fixation by Borabenzene." Angewandte Chemie International Edition in English 27, no. 2 (February 1988): 295–96. http://dx.doi.org/10.1002/anie.198802951.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Swain, T. "Nitrogen fixation in plants." Biochemical Systematics and Ecology 16, no. 1 (January 1988): 115–16. http://dx.doi.org/10.1016/0305-1978(88)90125-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Hubbell, D. H. "Nitrogen Fixation Research Programs." Forest Science 32, no. 4 (December 1, 1986): 1099. http://dx.doi.org/10.1093/forestscience/32.4.1099.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Madinger, Hilary L., and Robert O. Hall Jr. "Nitrogen fluxes in Western streams." UW National Parks Service Research Station Annual Reports 40 (December 15, 2017): 61–68. http://dx.doi.org/10.13001/uwnpsrc.2017.5575.

Der volle Inhalt der Quelle
Annotation:
Nitrogen pollution to streams is altering the nitrogen cycling in unknown ways, causing challenges for predicting nitrogen fixation fluxes within aquatic ecosystems. Increasing nitrate pollution decreases the amount of nitrogen fixation occurring in streams. However, the relationship between stream nitrate concentration and the rate of nitrogen fixation is unknown. We predict that lower nitrate streams will have the highest rates of nitrogen fixation. Additionally, there will be much more energy produced in streams with nitrogen fixation compared to the amount required to fix the nitrogen. We estimated whole-stream gross primary production and nitrogen fixation fluxes using the diel change in dissolved nitrogen and oxygen gases compared to the expected dissolved gas saturation. Our whole-stream method is preferable to chamber estimates to understand the relationship between energy requirements for nitrogen fixation and gross primary production, but additional data is needed to distinguish between relationship types and make our measurements generalizable.
 
 Featured photo by Intermountain Forest Service, USDA Region 4 Photography on Flickr. https://flic.kr/p/jbTRUj
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Zhang, Wenyao, Yihang Chen, Keyang Huang, Feng Wang, and Ziqing Mei. "Molecular Mechanism and Agricultural Application of the NifA–NifL System for Nitrogen Fixation." International Journal of Molecular Sciences 24, no. 2 (January 4, 2023): 907. http://dx.doi.org/10.3390/ijms24020907.

Der volle Inhalt der Quelle
Annotation:
Nitrogen–fixing bacteria execute biological nitrogen fixation through nitrogenase, converting inert dinitrogen (N2) in the atmosphere into bioavailable nitrogen. Elaborating the molecular mechanisms of orderly and efficient biological nitrogen fixation and applying them to agricultural production can alleviate the “nitrogen problem”. Azotobacter vinelandii is a well–established model bacterium for studying nitrogen fixation, utilizing nitrogenase encoded by the nif gene cluster to fix nitrogen. In Azotobacter vinelandii, the NifA–NifL system fine–tunes the nif gene cluster transcription by sensing the redox signals and energy status, then modulating nitrogen fixation. In this manuscript, we investigate the transcriptional regulation mechanism of the nif gene in autogenous nitrogen–fixing bacteria. We discuss how autogenous nitrogen fixation can better be integrated into agriculture, providing preliminary comprehensive data for the study of autogenous nitrogen–fixing regulation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Merbach, W., and H. J. Jacob. "Nitrogen Fixation and Nitrogen Fertilization of Soybeans." Isotopes in Environmental and Health Studies 32, no. 2-3 (August 1996): 173–80. http://dx.doi.org/10.1080/10256019608036309.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Kimble, Linda K., and Michael T. Madigan. "Nitrogen fixation and nitrogen metabolism in heliobacteria." Archives of Microbiology 158, no. 3 (August 1992): 155–61. http://dx.doi.org/10.1007/bf00290810.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Sumaira Mazhar, Sumaira Mazhar, and Jerry D. Cohen and Shahida Hasnain Jerry D Cohen and Shahida Hasnain. "Novel Approach for the Determination of Nitrogen Fixation in Cyanobacteria." Journal of the chemical society of pakistan 41, no. 1 (2019): 105. http://dx.doi.org/10.52568/000711/jcsp/41.01.2019.

Der volle Inhalt der Quelle
Annotation:
Non-heterocystous nitrogen fixing strains of cyanobacteria were screened by their ability to grow in nitrogen deficient media. The selected nitrogen fixing cyanobacterial cells were then cultured in BG11 media supplemented with [15N]-labeled sodium nitrate. Under these growth conditions any organic [14N] found in the cyanobacterial cells would simply come from nitrogen fixation because [15N] was the only available source of nitrogen in the medium. Amino acids extracted after different time periods (after 15, 30, 40, 50 and 60 days of inoculation) were used for the determination of the 14N/15N ratio using GC-MS. Results from the present study support the conclusion that at stationary phase of growth cyanobacterial nitrogen fixation was no longer supplying a significant amount of nitrogen. This approach not only provided a detailed method for the evaluation of the nitrogen fixing potential of the cyanobacteria in culture, but also suggests novel approaches for the assessment of the ability of the strains to provide nitrogen enrichment to plants under co-cultivation conditions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Liu, Ying, Zhenhui Yan, Jianguo Wang, Jihao Zhao, Yiyang Liu, Jie Zou, Lin Li, Jialei Zhang, and Shubo Wan. "Optimizing Initial Nitrogen Application Rates to Improve Peanut (Arachis hypogaea L.) Biological Nitrogen Fixation." Agronomy 13, no. 12 (December 8, 2023): 3020. http://dx.doi.org/10.3390/agronomy13123020.

Der volle Inhalt der Quelle
Annotation:
The application of nitrogen fertilizer is crucial to the growth and biological nitrogen fixation of peanut, especially in the seedling stage where nodules have not yet formed. However, it is still uncertain how much initial nitrogen fertilizer should be applied to promote peanut root growth, nodule formation, and biological nitrogen fixation (BNF). There, a 2-year pot experiment was conducted using Huayu 22 (HY22, large-grain cultivar) and Huayu 39 (HY39, small-grain cultivar) as experimental materials to research the effects of different initial nitrogen fertilizer application rates on peanut root growth (root weight, root length, root mean diameter, root activity) and biological nitrogen fixation capacity (nodule number, nodule weight, biological nitrogen fixation, and nitrogen fixation potential per plant). N0, as control, four initial nitrogen fertilizer application rates were established: 15 kg·hm−2 (N15), 30 kg·hm−2 (N30), 45 kg·hm−2 (N45), and 60 kg·hm−2 (N60). The present results showed that the nodule number, nodule dry weight, nitrogenase activity, and biological nitrogen fixation of the HY22 cultivar under the N15 treatment were higher compared to those under other treatments over the two growing seasons. In addition, the cultivar of HY39 treated with the N15 treatment also increased the nitrogen fixation potential per plant and BNF relative to other treatments. Although the application of 60 kg·hm−2 nitrogen increased the root surface area and root volume, it decreased the nitrogenase activity, nodule dry weight, and nitrogen fixation potential per plant of HY22 and HY39 varieties in both growing seasons. Above all, an initial nitrogen application of 15 kg·hm−2 may be the optimal treatment for promoting peanut nodule formation and biological nitrogen fixation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Davies-Barnard, Taraka, Sönke Zaehle, and Pierre Friedlingstein. "Assessment of the impacts of biological nitrogen fixation structural uncertainty in CMIP6 earth system models." Biogeosciences 19, no. 14 (July 27, 2022): 3491–503. http://dx.doi.org/10.5194/bg-19-3491-2022.

Der volle Inhalt der Quelle
Annotation:
Abstract. Biological nitrogen fixation is the main source of new nitrogen into natural terrestrial ecosystems and consequently in the nitrogen cycle in many earth system models. Representation of biological nitrogen fixation varies, and because of the tight coupling between the carbon and nitrogen cycles, previous studies have shown that this affects projected changes in net primary productivity. Here we present the first assessment of the performance of biological nitrogen fixation in models contributing to CMIP6 compared to observed and observation-constrained estimates of biological nitrogen fixation. We find that 9 out of 10 models represent global total biological nitrogen fixation within the uncertainty in recent global estimates. However, 6 out of 10 models overestimate the amount of fixation in the tropics and therefore the extent of the latitudinal gradient in the global distribution. For the SSP3-7.0 scenario of future climate change, models project increases in fixation over the 21st century of up to 80 %. However, while the historical range of biological nitrogen fixation amongst models is large (up to 140 kg N ha−1 yr−1 at the grid cell level and 43–208 Tg N yr−1 globally) this does not have explanatory power for variations within the model ensemble of net primary productivity or the coupled nitrogen–carbon cycle. Models with shared structures can have significant variations in both biological nitrogen fixation and other parts of the nitrogen cycle without differing in their net primary productivity. This points to systematic challenges in the representation of carbon–nitrogen model structures and the severe limitations of models using net primary productivity or evapotranspiration to project the biological nitrogen fixation response to elevated atmospheric carbon dioxide or other environmental changes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!